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1.0 ABSTRACT

This report describes an attempt to design by analytic means a class of
axisymmetric bodies having low drag in incompressible flow for the case where
the boundary layer is fully turbulent over the entire body. The drag is to

be made small solely by proper shaping of the body, and the drag coefficient to
be ,,,inimie; is that based on a reference area equal to the two-thirds power
of the body's volume. A comparison of various drag-calculation methods shows
that the Truckenbrodt formula, which expresses drag as an integral of a power
of the potential-flow surface velocity, is sufficiently accurate, and this
formula is adopted as the chief analytic tool. Among the consequences of this
choice is that bodies with low drag at one Reynolds number have low drag at
all. Drag performances of various types of bodies are compared, including
those of "cavitation shapes" derived from a new inverse potential-flow program.
Two-dimensional optimization studies are carried out using an integral formula
for drag analagous to that of Truckenbrodt. The principal conclusion is that
the drag coefficient is not very sensitive to body shape and thus that no
significant drag reductions can be obtained from shaping alone.
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4.0 PRINCIPAL NOTATION

A area enclosed by the profile curve of a two-dimensional body

CD drag coefficient; based on two-thirds power of volume for dxisymmetric

bodies; based on square root of A for two-dimensional bodies

cf skin friction coefficient

D drag; used in some figures for body diameter
I

H ratio of boundary-layer displacement thickness to mome3tum thickness

I integral defined by (13)

J Integral defined by (19)

L body length

Re Reynolds number based on Lody length

r radial coordinate, distance from symmetry axis

S reference area equal to two-thirds power of body volume

U potential-flow velocity on the body surface

U00 free-stream velocity

u velocity component in boundary layer. On the body it is parallel to

the local body surface. In the wake it is parallel to the free-stream
di rection

x coordinate parallel to free-stream direction. For axisymmetric flow

the x-axis is the symmetry axis.

y in section 6.0; denotes distance in the boundary layer measured normal

to the body surface. In section 7.1 and In all two-dimensional analysis

it denotes a coordinate perpendicular to the free-stream direction

a slope angle of theprofile curve of the body with respect to the x-axis

6 boundary-layer thickness

6 boundary-layer displacement thickness

e boundary-layer momentum thickness

p fluid density - a constant

X momentum area

X. momentum area of the wake far downstream
5
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5.0 INTRODUCTION AND SUMMARY

This report presents results of a study whose object has been the

design of axisymmetric bodies having low drag at high Reynolds number. More

precisely the problem may be stated as follows. Consider an axisymmetric body

at zero angle of attack in an incompressible flow whose Reynolds number is so

large that the boundary layer on the body may be taken fully turbulent over the

entire length of the body. Let the drag coefficient he based on a reference area

defined as the two-thirds power of the body's volume. It is desired to mini-

mize this drag coefficient solely by proper shaping of the body without resort

to suction, compliant surfaces, additives, etc. Moreover, this minimization

should be performed for a range of Reynolds number. While the rroblem is easy

to state, it is difficult to formulate in a mariner that admits of fruitful

analysis. Accordingly, the present work has consisted of several investlga-

tions designed to shed light on the mechanisms leading to low drag and aiso

to determine a number of bodies having as low a drag as possible. The chief

emphasis has been on the axisymmnetric problem, but the related two-dimensional

problem has been considered also. The latter is more tractable in some ways,

and the results obtained have definite implications for the axisymmetric case.

The first part of the study concerns methods of computing the drag oý an

axisynmmetric body (section 6.0). The iOeas and formulas for calculating drag

from a momentum deficit approach are presented. These formular are imple-

mented with two different types of bourdary-layer calculation methods and also

with a set of simplifying issumptions that eliminates the need for an explicit

boundary-layer calculation and calculates drag from an integral over' the body

of a ower of the potential flow velocity. Drags computed by all three mpthods

are compared with experimental dragr obtained for a set of bodies in water.

It is concluded that the simplified integral method of computing drag is

sufficiently accurate and so much simpler than the others that it is used in

all subsequent calculations. A particularly desirable feature of this method

is the fact that the Reynolds number enters only in a multiplicative factor.

Thus, if a particular bodyhas the lowest dr'g at one Reynolds number, it has

the lowest drag at all Reynolds numbers, and the investigation need not concern

itself with Reynolds number directly.
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The drag performance of a wide variety of bodies has been compared using

the simplified integral drag formula (section 7.0). The drag coefficient for

a general prolate spheroid can be written down analytically. The curve of

drag coefficient versus fineness ratio for prolate spheroids has proven a very

useful device for correlkting drags for all bodies, because all "good" shapes

have drags that plut near this curve. The curve has a shallow minimum, and

thus there is a preferred range of fineness ratio from about three to four.

Oddly, the simplified integral dvag formula does not strictly apply to prolate

spheroids, from which the flow is presumed to separate at their blunt aft ends.

However, the separation can be removed by a small amount of aft streamlining or

"boattailing" with a very small effect on dr3g. in any case the unseparated
"good" bodies have relatively low drags that essentially follow the curve.

Unlike certain two-dimensional applications, there is no information on

what properties of the body shape, its pressure distribution, or its skin-

friction distribution lead to low drag. Thus the use of inverse boundary-layer

or potential-flow methods is of limited value in the present problem. Never-

theless, some investigation along this line has been carried out. In partic-

ular "cavitation" bodies having extensive regions of constant pressure were

studied on the ground that they should have relatively low maximum velocities

and thus possibly low values of the drag integral. Unfortunately, this proved

not to be true (section 7.3).

In implementing the above investigation a new method of solution for the

axisynmetric potential flow problem was discovered and developed. This solu-

tion, which is applicaole to completely general shapes, is based on a conformal

transformation of the body to a circle and obtains the solution as a series of

Chebyshev and Legendre polynomials. Both direct and inverse problems can be

treated. While the application of this procedure to the low-drag problem

appears to be of limited usefulness, the development of such a method is felt

to be important in itself.

Two-dimensional analysis has been used in section 8.0 to attempt to

determine shapes that minimize the drag coefficient calculated from the

simplified drag integral. For this study the two-dimensional drag coefficient

has been based on the square root of the area enclosed by the body profile as

7
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the closest analogy to the normalization based on the two-thirds power of the

volume that is used in the axisymmetric case. Slender-body theory is shown

to be inadequate. General solutions based on conformal transformations yield

bodies having minimum drag coefficients. However, the drags thus obtained are
only very slightly less than those for simple bodies selected at random.

Probably the same is true for the axisymmetric problem.
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6.0 DIRECT DRAG CALCULATION FOR AXISYMMETRIC BODIES

6.1 Theory for Drag Calculation Based on Momentum Deficit

Because the straightforward calculation of drag by integration of surface

pressur,, and skin friction turns out to be inaccurate [1], the drag of a body

must be obtained by considering the deficit of momentum far downstream in the

wake. The basic analysis, which is given in [2], is merely outlined here.

Consider an axisymmetric body at zero angle of attack as shown in Fig. 1.

The boundary layer on the body continues into the wake and far downstream

there is a deficit of momentum due to viscous retardation of the flow along

the body surface. From momentum considerations the drag of the body is given

by

D = 27p f u(U. - u)rdr = 2p f u(ll - u)rdr (1)

0 0

where p is fluid density (a constant in the present study), U is free

stream velocity, u is the local velocity component parallel to the symmetry

axis (x-axis), r is radial distance from the symmetry axis, and 6 is the

radius of the wake. The integral in (1) is taken in an x = constant plane

which for convenience is taken as far downstream. The momentum area of the

wake far downstream is defined as

5

S= 2I - rd' (2)

0

so that

D = pU2 x (3)

the drag coefficient is

CD D 2X* (4)D (/2) s 79
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where S is some reference area, which in the present study is equal to the

two-thirds power of the volume of the body,. It is desired to compute this

drag in terms of quantitier evaluated on the body, and this is where the first

approximation must be introduced.

The momentum thickness of the boundary layer at any point of the body is

0

In (5) the various quantities have their customary definitions, which are

somewhat different than those of equation (1), which applies to a location in

the wake. Specifically, y denotes distance normal to the body surface,6

is boundary-layer thickness, u is -he velocity component parallel to the

surface, and U is the value of v for y = .Moreover, r is radial

distance from the symmvetry axis tc a point on the body surface, and a is the

local slope angle of the surface with respect to the symmetry axis. The

momentum area of the boundary layer at any location on the body is defined as

x 2lnre (6)

Finally define

6*')

I(7

where 6* is the usual boundary-layer displacement thickness

6*~ ~ L f~ ~) + Cos a)dy (8)

0

Now the required approximation is introducea. Young's analysis [2) leads to the

relationship

Go I+5/ (9)

10
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where x, U, and H in (9) are all evaluated at a particular location on
the body - usually "near" the trailing edge. This gives for the drag

coefficient

CD = 47_ro /U_(H+5)/2CU = (L (10)

Granville [3] has an alternate form of (9) which gives as an alternative to

(10) the form

4nro IU (7/8)H+(17/8) (11)
cD -

However, for most of the present work (10) has been used. The various quan-

tities appearing in (10) must be evaluated by means of a boundary-layer calcu-
lation. During the present study three boundary-layer methods were considered,

one of which evaluates these quantities directly in terms of potential-flow

quanti ties.

6.2 Finite-Difference Bcundary-Layer Method

The most general and elaborate type of boundary-layer method is that which
solves a partial differential equation for flow in the boundary layer. The

numerical solution is effected by some, type of finite-difference scheme,

usually beginning with the front stagnation point and proceeding downstream

along tne body. The calculation terminates if separation is encountered but
otheulise traverses the entire body. In the present study of low-drag bodies

it is presumed that all good bodies will indeed have unseparated boundary
layers, so that the above is not a serious restriction. In fact one advantage

of the finite-difference method is that it predicts separation (or its absence)

which some other methods do not. For a laminar boundary layer such a technique

may be made numerically exact. However, for a turbulent boundary layer an

empirical or semi-empirical "closure" condition is required that usually takes

the form of an "eddy-viscosity" law. This assurption renders the calculation

approximate. A variety of closure conditions have been proposed. The method

used in this study is that due to Cebeci and Smith. Details of the procedure

are given in (4].

11



According to the theory of section 6.1, the drag of a body is obtained

by evaluating (10) at the downstream end of the body. However, (10) can be

evaluated at any point of the body. If this is done and the results plotted

versus position along the body, certain modifications in the use of the formula
become evident. There are three different types of cases; examples of which

are shown in figures 2, 3 and 4. Figure 2 shows the unambiguous case where
the drag coefficient is a smooth function of position all over the body, and

extrapolating it to the aft end of the body presents no problem. This extrapo-

lated value is then taken to be the drag of the body. More common, however,
is the type of case shown in Figure 3, where the calculated drag coefficient

rather suddenly begins to increase more rapidly a short distance ahead of the

aft end of the body - about 90% of body length in figure 3. Extrapolating

the calculated curve for such a case to the aft end of the body gives a value

of drag that is far too large. The most effective procedure appears to con-

sist of extrapolating to the aft end from the smooth portion of the curve

upstream of the "break" as shown in figure 3. The third type of case is that
shown in figure 4. It is characterized by having a calculated drag coefficient

that is not monotonically increasing. Instead there is a maximum a short distance

ahead of the aft end of the body, and the drag decreases downstream of this

point. The only reasonable procedure is to use the maximum computed value of

drag a3 the drag of the body.

Despite the somewhat striking differences in the procedure for estimating

drag in the three cases, there is no real difference in the accuracy of the
results as judged by comparison with experimental values. The "nice" case of

figure 2 agrees with experiment no better than the "difficult" case of figure 3.

6.3 Momentum-Integral Boundary-Layer Method

Momentum-integral boundary-layer methods are characterized by the fact

that they use certain assumptions, such as the form of the velocity profile
in the boundary layer, to reduce the partial differential equation of

boundary-layer flow to an ordinary differential equation (or set of such

equations) along the body surface. Patel (5] has developed a method of this

type for calculating thick axisymmetric boundary layers and Nakayama and Patel

[6] have used this method together with Granville's formula (11) to calcu-

late drag. As in the third type of case of section 5.2, the drag calculated

12



in this way does not increase monotonically along the body hut has a maximun,
which is taken as the drag of the body.

6.4 Simplified Integral Drag Calculation

The drag calculation methods of the previous two sections use a boundary-
layer calculation procedure to determine the quantities that enter into the
drag formula (10). The boundary-layer calculation procedures are approximate
but are still fairly elaborate and require computer programs for their imple-
mentation. Moreover, the drag calculation must be repeated for each Reynolds
number of interest. By making certain additional approximations the quantities
in (10) can be obtained directly, and thus the need for a boundary-layer calcu-
lation method can be eliminated entirely. In the present study this has been

done using the theory of Truckenbrodt (7].

For the case of a fully turbulent boundary layer the theory of [7] gives
the momentum thickness at a point on the body as

c f Ll1/7
0 - .±!Z.I (12)

_r (U/U.)3

where L is body length, cf is total skin-friction coefficient, and where

10/3 16/7
= [f( 3 r7/6ds (13)

where s denotes arc length along the body profile %urve, and where the

range of integration is from the front stagnation point to the point where
a is to be evaluated. :f this is used in (10) the drag coefficient is

Ccf I (L)(H-)/2 (14)

Since H > 1 it is evident that if the potential-flow velocity is used in
(14,. then CD = 0 at the aft end of the body. However, since CD is never
negative, it obviously has a maximum value, which generally occurs a short
distance ahead of the aft end of the body just as for the methods of sections
6.2 and 6.3. This maximum value is taken as the drag of the body.

13



Calculations obtained from the method of section 6.2 for a large number
of bodies, have shown that at the location where (14) is a maximum

(H-il)/2

0.975 < (U ) < 1.0 (15)

for all bodies. Thus it is consistent with the other approximations that have
beern made to set this quantity equal to unity and to write the drag as

1 n~ /7 10/3 1/ -6/7 (6
D U~f r ds (6

[bofdy JL
where the integral is over the entire body profile. The Reynolds number Re

enters only in the skin-friction coefficient cf which the Prandtl-Schlichting
relation [8] gives as

Cf - 0.455 (17)[log(Re)]•

Equation (16) is the simplified integral drag formula, which obtains
drag directly from the potential-flow velocity distribution. The fact that
the Reynolds number enters only in a multiplicative factor means that if one

shape has lower drag than another at one Reynolds number, it will have lower
drag at all Reynolds numbers. In particular an optimum shapeif it can be

found,is independent of Reynolds number.

6.5 Comparison of the Methods

The relative accuracies of the three methods for computing drag in incompres-

sible flow have been evaluated by comparing calculated drags with the highly

accurate experimental results obtained by Gertler for a series of bodies of revo-

lution in a towing tank (9]. For these comparisons eight of the 20 bodies of

* [9] were selected in such a way that the complete ranges of fineness ratio and

drag values are well represented.

First the simplified integral formula (16) is compared with the result

of using the finite-difference boundary-layer method of section 6.2 in the
basic drag formula (10). Figures 5 and 6 compare these two methods with

14



experiment for Reynolds numbers of 10 million and 23 million, respectively.

The simplified integral formula (16) is definitely more accurate. Its RMS

errors are approximately 60% of those obtained by the use of the finite-

difference boundary-layer method. Formula (16) is thus much to be preferred

because of its simplicity.

Next the momentum-integral boundary-layer method of section 6.3 used with

Granville's drag formula (11) is compared with the simplified integral formula

(16) and with the result of using the finite-difference boundary-layer method

of section 6.2 in the basic drag formola (10). These comparisons, which are

shown in figures 7 and 8, respectively, are for the same set of bodies from

[9) at a Reynolds number of 20 million. The calculation based orn the momentum-

integrai is definitely the m-.:. accurate of the three methods studied. Its

RMS error is about 57% of that obtained by the simplified integral formula and

only 35% of that obtained using the finite-difference boundary-layer method.

Despite the above finding the simplified integral formula (16) has been

used for drag calculation in this study. One important consideration was

that the momentum-integral method was not obtained by the authors until rather

late in the study. The other important factor is the greater simplicity of

fotvula (16), including the fact that Reynolds number need not be considered

explicitly in the investigation. Despite the somewhat inferior accuracy of

formula (16), it seemed unlikely that any overall conclusions drawn on the

basis of this formula would be drastically overturned by use of the momentum-

integral method. The finite-difference method has been applied after the fact

to the best bodies to verify that their boundary layers are unseparated.

15
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"7.0 INVESTIGATION OF LOW-DRAG SHAPES USING THE

SIMPLIFIED INTEGRAL DRAG CALCULATION

7.1 Comparison of Two-Dimensional and Ax•sr.tric Formulas
Although the principal interest in the present study is axisyvnmetric

flow, two-dimensional flow has been considered also, because it is simpler
from some standpoints and it should be at lvast qualitatively similar. In
fact the similarities between the two-dimensional and axisymmetric cases can
most easily be seen by examining the two forms of the simplified drag integral.
Spence [10] reduces the drag of a two-dimensional body to an integral of the
potential-flow velocity in a manner analogous to the theory of Truckenbrodt,
quoted in section 6.4, for axisyfmietric bodies. The two-dimensional drag coef-
ficient must be normalized with respect to a reference length that is as
analagous as possible to the reference area (two-thirds power of volume) used
for the axisymmetric drag coefficient. The length chosen is the square root
of the area enclosed by the profile curve of the body. With these choices
the drag coefficient for both axisymmetric and two-dimensional bodies may

be written V,,p
IUfy n ds]

CD = (const) r (18)
- Yqdx

where x and y denote, respectively, distance parallel and perpendicular to
the free stream. As before U is surface velocity, s is arc length, and
the integrals are over the entire body. The exponents are

Axisymmetric Two-Dimensional
m 10/3 4
n 7/6 0

p 6/7 5/6
q 2 1
r 2/3 1/2

16



7.2 Prolate Spheroids and Pointed Shapes
The function to be adjusted to obtain the minimum is of course the body

shape y(x). Some direct attacks on the minimization problem are outlined in
subsequent sections. In this section attention is concentrated on an attempt
to find good shapes simply by using (16) to calculate results for a variety of
bodies.

The drag coefficient of (16) can be obtained analytically for prolate
spheroids as a function of fineness ratio. This function is graphed in
Figure 9. Drag values are shown for a Reynolds number of 10 million, but at
other Reynolds numbers only the level of the curve is changed not its shape.
It can be seen that there is a shallow minimum at a fineness ratio somewhat
greater than three. This curve has proved quite useful in analyzing bodies,
because it turns out that on the basis of approximately 50 calculations most
good bodies give drags that plot very near this curve. It might be argued
that since prolate spheroids have blunt aft ends near which the boundary
layer separates, the curve of figure 9 is not meaningful. To investigate this
several prolate spheroids were fitted with conical boattails. Equation (16)
was evaluated for these bodies and the results lie close to the basic curve
as shown in figure 9. Absence of separation was verified for these bodies
by finite-difference boundary-layer calculations. By way of example, figure
10 shows results for a 40%-thick prolate spheroid that was fitted with a
conical boattail to produce a body of fineness ratio 3.25, the flow about which
is effectively unseparated. For fineness ratios below about 3, absence of
separation could not be obtained, and it is concluded that the curve of
figure 9 is only of theoretical interest to the left of this point. The cal-
culated drags for the Gertler bodies (figure 5) are also shown in figure 9 and
they also lie on the basic curve. The calculations imply a preferred range
of fineness ratio from 3 to 4. Experimental results may alter this conclusion
somewhat - probably in the direction of increased fineness ration.

7.3 Constant-Pressure Bodies Derived from an Inverse Procedure
Since the integrand of the simplified drag integral (16) depends on a

higher power of surface velocity than of local body ordinate, it was hypothe-
sized that the search for low drag bodies might better be conducted in
terms of velocity distribution rather than in terms of shape directiy. That

17



is, it was thought that certain velocity distributions might have low values

of drag associated with the corresponding shapes. However, no general principles

of this sort could be formulated. It does appear from the form of (16) that
keeping the maximum velocity as small as possible should be desirable. This

leads to consideration of velocity distributions which are constant at their

maximum value over much of the body, i.e., "cavitation shapes." Unfortunately,

it turns out that their performance is not much different from prolate spheroids

(see below).

Suppose a surface velocity distribution can be selected by some criterion.
Determination of the body shape corresponding to this velocity distribution

requires an inverse potential-flow method. When the present study was initiated

the development of such a method for the axisymmetric case was an unsolved

problem. Early in the study [11] appeared, which solves the inverse problem

by iterative use of a direct method. As part of the present study a n2w type

of direct-and-inverse solution was developed for the problem of axisymmetric

potential flow. The method of solution depends on conformal transformation

and a series soliition in terms of Legendre and Chebyshev polynomials. A

detailed presentation is contained in Appendix A.

Based on the reasoning outlined above, "cavitation shapes" were determined

by both the method of [11) and that of Appendix A. The velocity distributions

that were called for had extensive regions of constant velocity. Because of

the details of the inverse procedures the bodies that resulted had velocity

distributions that were almost, but not quite, constant. Figure 11 shows a typ-

ical result.

Figure 12 shows drag coefficients computed by (16) for nine bodies designed

to have virtually constant maximum-velocity regions. Four were obtained directly
by modifying elliptic contours. The other five are products of the inverse

potential-flow methods mentioned above. Four of the five have pointed aft ends

similar to the one shown in Figure 11. The fifth, whict has the lowest drag of

all, is symmetric fore-and-aft and has a blunt aft end. Flow about the poirnted
shapes is unseparated. From Figures 9 and 12 it may be concluded that the per-

formance represented by the curve for prolate spheroids can actually be obtained

but that shapes with significantly lower drag are difficult to find.
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8.0 APPLICATION OF MINIMIZATION TECHNIQUES TO THE TWO-DIMENSIONAL

LOW-DRAG PROBLEM BASED ON THE SIMPLIFIED IP'ECRAL FOIPULA

8.1 Statement of the Problem

One of the principal reasons for concentratng ot, the simplified integral

formula for drag is that application of a rigorous mininization technique to
this integral appears to be at least a possibility. According to this formula
a body with minimum drag at one Reynolds number has minimum drag at all Reynolds

numbers. For simplirity the initial work on minimization ias done for tie two-
dimensional problem. The results obtained were not sufficiently ''ncouraging to

justify much additional effort for the axisyvmetric case,

The problem is to select a shape y(x) in such a way that the two-

dimensional form of (18) is minimized. Alternatively, the function y(x) must

be selected to minimize the integral

J - D6 / 5 = (const) f U4 ds (19)

body

subject to the constraint tVat the Integrai

A= f ydx (20)

body

take on a specified value. This is not a well-defined calculus-of-variations

problem. The difficulty is that, while U depends on y in the sense that
given a complete body shape y(x) then U(x) can be determined, there is no

relation between local values of U and y.

8.2 Slender-Body Theory
For sufficiently slender bodies the standard aerodynamic techniques yielc,

the following relationship

.__ A (U--1)(l -- 2t)2dt t = x/L (21)

oHi -iN-t)
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while (19) becomes

1

J f U4 dt (22)

0

Now standard calculus-of-variatio,is techniques can be applied. The result is

U = (const) (1 - 2t) 2 1/3  (23)
[I - (I - 2t)2]I1

This velocity has fore-and-aft symmetry with a 1/6-power singularity at the ends.

Clearly the theory has broken down. However, to investigate the possibility

that the theory has indicated certain desirable features for low-drag, calcula-

tions were performed for bodies having "saddleback" velocity distributions

(fore-and-aft peaks of finite size with a lower velocity region in the middle).

These bodies consist of semicircles at the front and rear joined by a constant-

thickness region, whose length may be varied to give different fineness ratios.

Results are discussed in section 8.4 below where the bodies are identified as
"Hcircle-flat" bodies. They turned out to have relatively high drag. Thus,

slender-body theory was abandoned.

8.3 A General Procedure Based on Conformal Mapping

In two-dimensional potential flow the complete solution for both direct

and inverse problems can be expressed in terms of the coefficients of the con-

formal mapping that maps the body in question to the unit circle. This fact

permits a rather general "brute forceh solution to the minimization problem.

Let z(c) be the conformal mapping that carries a body shape in the z-plane

to the unit circle in the c-plane. Then it can be shown that the mapping

derivative must satisfy a number of constraints and that a general expression

consistent with these constraints can be written down quite simply. This topic

is discussed in more detail in appendices A and B, where the general formula in

question, viz.

dz 0 1 1-2/ I +
(+ ( + + ... ) (24)
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is justified. The angles T2  and T, are twice the cone angles of the fore and
aft end of the body, respectively. Equation (24) defines the mapping coeffic-

ients an which must be real for application to bodies of revolution by reason
of the synwmetry. Also closure of the profile requires that a1 = (T 2 - T1)/T.

Now both the surface velocity on the body and the area enclosed by the
profile can be expressed in terms of these coefficients, and thus so can the
drag coefficient based on square root of area (18). The most general case of

(24) has not been investigated fully, and a detailed account of the various

complications is the subject of appendix B. However, for a blunt body

(T 1 = T2 = n) certain important numerical simplifications occur which enable
this case to be computed rather slrply. Specifically the drag coefficient for
such a body can be written

= 1 I (25)
CD const)H(,a)

where

2 a2 a2 \/2
G(an) = - - (26)

and

H(w,an) = n (1 + a2 cos 2w + a3 cos 3w + .. ,)2 +

(a2 sin 2w + a3 sin 3w + ... )2]3/2 (27)

A very simple numerical searching scheme has been developed for finding minimum

values of a function of a finite number of real variables which has an obvious

application to the problem of minimizing the CD given by (25) and (26) (see
appendix B, section B6). Notice that this is a minimum problem in n variables,
not a calculus of variations problem. If only a2  is retained, the body shape

is an ellipse and the procedure gives the analytically correct thickness ratio
for minimum drag coefficient. Using a large number of terms gives the result
that the optimum shape is actually pointed, because the body obtained has its
infinite slope only in a very small region of the fore and aft ends, i.e.,

the procedure is trying to give a pointed shape. Figure 13 shows the optimum

"blunt" body, which appears pointed. Moreover, the coefficients an of (26)

21
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for the optimum body appear to be asymptotically equal to those of an expansion

for a particular fractional power. The indications are that the true optimum

has an equation of the form

d1 (28)

which is the simplest form of (24), namely the one with all an = 0. The equal

fore and aft angles T appear to be approaching approximately w/3, i.e., 300

cone angle (see appendix B, section B7). The near-optimum body of figure 13

achieves a drag reduction over the optimum ellipse of 0.15% - a very interesting

and discouraging result.

It appears that by using the new type of axisynmetric solution described

in appendix A, an analogous minimization procedure could be applied to the

axisymmetric case. However, all the indications are that only very small

reductions in drag could be obtained.

8.4 Miscellaneous Two-Dimensional Results

While the emphasis ofthe present study is on axisymmetric bodies, some

two-dimensional cases have been investigated also. Most, but not all, of these

cases are connected with the optimization studies of the preceeding sections.

By analogy with the axisymmetrlc case, all two-dimensional bodies considered

have a right-and-left symmetry with respect to the flow direction and are,

of course, nonlifting.

Figure 14 summarizes the drag coefficients obtained for various two-

dimensional bodies from the integral formula (18). The curve of figure 14

represents the analytic expression to which (18) reduces for the case of

ellipses. The drag of the "near-optimum" body of figure 13 is shown, as well

as drags for a set of "circle-flat" bodies that have "saddleback" velocity

distributions. As discussed in section 8.2 these bodies were suggested by

results from slender-body theory, but it can be seen that their drags are

significantly higher than ellipses.

Figure 14 also shows drags for a series of symmetric struts that were

designed to have zero skin friction over their aft portions [12]. Despite
this their total drag coefficients, as calculated from (18), are higher than

those of ellipses. 22



9.0 CONCLUSIONS

1. In computing the drag of an axisymmetric body with fully turbulent

boundary layer in incompressible flow the momentum-integral method of

Nakayama and Patel [6] is censiderably more accurate than either the

method based on a finite-difference boundary-layer calculation [4] or

the simplified integral formula based on the analysis of Trurkenbrodt [7].

Of the latter two methods the simplified integral formula is more accurate

than the current finite-difference method and much easier to use.

2. If the simplified integral formula is used to compute drag, the following

conclusions can be drawti for axisymmetric bodies with fully turbulent

boundary layers in incompressible flow:

a. A shape having the lowest drag, a one Reynolds number has the lowest

drag at all Reynolds numbers.

b. Shapes with fineness ratios in the range three to four have the

lowest drag coefficients based on the two-thirds power of volume.

c. Drag coefficient is insensitive to shape and no shape has been found

with significantly lower drag than a boattailed prolate spheroid.

A more accurate drag calculation might modify these conclusions

slightly but would probably not drastically revise them.

3. The two-dimensional analogue of the simplified integral formula for drag

can be rigorously optimized in terms of mapping coefficients to find a
"near optimum" shape that supposedly has the lowest possible. Unfortunately

the shape so determined has a drag coefficient almost undetectably less

than bodies selected at random.

4. Accurate and very rapid solutions to both the direct and the inverse

problems of axisymmetric potential flow can be obtained using the expan-

sion method of appendix A.
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Figure 5. Comparison of drags computed by the finite-difference boundary-
layer method and the simplified integral method with experimental
data for a series of eight bodies at a Reynolds number of 10 million.
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Figure 6. Comparison of drags computed by the finite-difference boundary-
layer method and the simplified integral method with experimental
data for a series of eight bodies at a Reynolds number of 20 million.
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Figure 7. Comparison of drags computed by the momentum-integral boundary-layer
method and the simplified Integral method with experimental data for
a series of eight bodies at a Reynolds number of 20 million.

31



0.026-0.026RMS ERRORS

0 FINITE DIFFERENCE 0.00174

£ MOMENTUM INTEGRAL 0.00062

0.024

0

0.022 0
{00

CALCULATED

DRAG

0.020

0.0118

0.016 I I i

0.016 0.018 0.020 0.022 0.024 0.026

EXP'ERIMENTAL DRAG, FROM [9]
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mental data for a series of eight bodies at a Reynolds number of
20 million.
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APPENDIX A

A GENERAL ANALYTICAL METHOD FOR AXISYMMETRIC
INCOMPRESSIBLE POTENTIAL FLOW

ABSTRACT

A method is presented for calculating the flow field about bodies of

revolution in lncompres~ible potential flow as a sequence of elementary analytic

functions (Fourier, Chebyshev and Legendre). For the cases of greatest inter-
est to practical engineering (cusp and blunt trailing edges) comparison with an

existing highly accurate numerical method shows that convergence is good. Only
ten terms are required to give adequate accuracy for negligible computer usage

on bodies with much more character than usually encountered. The theory can be

used for design (inverse) operation to produce body shapes associated in some
least squares sense with a desired input velocity. It is shown that, when used

this way, again good results are obtained with remarkably few terms or iterative

cycles.
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Al. INTRODUCTION

The literature of axisymnietric incompressible potential flow abounds with

nunerical methods of the direct type, in which integral equations aro solved

eventually by matrix methods following some form of discretization. This char-

acteristic traditional path starting from von Karman's [Al] original ,aumerical

method and arriving at such sophisticated schemes as the higher-order Neumann

method of Hess [A2] has not only spawned no general analytical techniques, but

even very few special solutions. In this context "analytical" will be taken to

mean solutions in terms of known functions, or a sequence of known functions, such

that the convergence and computation of the coefficients allows practically

useful calculations to be carried out to arbitrary order. Thus solutions for

which only two or three terms can be obtained (e.g., asymptotic series or

matched local expansions, etc.) are not considered to be analytical in this

sense. Whis appendix deals with the development of a general analytic method

for axisymmetric flow.

In two dimensions there are analytical methods for isolated bodies (air-

foils),and experience with them has shown that they have certain clear

advantages over the purely numerical schemes - as compensation in a very real

sense fur loss of generality. For instance - they are tisually quicker and

more accurate; they frequently provide detailed qualitative insight into far

field or special local behavior (near sharp trailing edges as an example), and

they often have a much more immediate applicatioil to inverse problems. In the
case of isolated airfoils this inverse capacity, in which profiles are designed

for a prescribed velocity distribution, has provPd very valuable.

One of the most important distinctions between the two dimensional and

axisymmetric cases from a theoretical point of view is that the former flows

can be treated entirely by complex variable methods including conformal map-

ping; whereas, although the meridian profile of an axisymmetric shape involves

only two variables, the flow field itself is not Laplacian in the potential.

This means, at best, that one could perhaps treat the geometry by mapping

methods; but then a much more sophisticated differential equation would have

to be solved. It seems that this largely explains the almost total lack of

analytical methods even though the actual equations of motion appear decep-

tively simple. However, one island in the sea of numerical methods is the work
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of Kaplan (A3], who did use a mapping for the geometry and then devised an
iterative scheme for the velocity potential. Unfortunately Kaplan's scheme

rapidly becomes very complicated so that it is cnly feasible to work out the

first three terms in detail, and quite impossible to program a computer to

calculate higher-order terms automatically.

Nevertheless, the underlying principle of this calculation was a good one.

By using recent advances in appreciation of conformal mapping methods (James

[A4]) it is shown below that a very wide class of bodies can be parameterized

in a very simple way, and that, consequently, analytical solutions can be found
for general axisymmetric shapes by a slightly unexpected series assumption -

for which an indefinite ,number of terms can be computed automatically. From

the examples given it is clear thet convergence can be expected to be very

good in general when used to calculate the direct flow about a given body.

However, since this investigation was originally stimulated by recent interest
[AS] in the possibility of a design (inverse) procedure for axisymmetric bodies,

it is even more significant that the convergence was also found to be excellent

on the cases tested when the theory was used in the inverse mode.

A2. EQUATIONS OF MOTION

For an axisymmetric body lying in the (x,y)-plane such that the free-

stream at infinity is parallel to the axis of symmetry (x), the velocity

potential (€) satisfies the well-known differential equationaI
Sxy ; y (Al)

with the additional conditions that 0 -. x in the far fiela and that the

derivative of 0 normal to the profile vanishes on the profile. It is quite

standard to seek orihogonal curvilinear transformations x = x(El, Y2.,

y = Y(&1 9 Ed in order to either simplify (.4l) or the profile representation
(thus making the normal derivative condition core tractable). Such a trans-

formation leads to

0- (A2)
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where h and h2 are the usual metrics, viz.

hz IZLax2l + 1L Oa2 h2 V(2+ ~2)

However, if the transformation is in particular a conformal mapping from the

C1 + t&2 plane to the x + iy plane then the Cauchy-Rieniann equations hold,
that is

ax_ ax D
aDl a 22' a 2 -B l

and therefore hI = h2 which reduces (2) to

.. ( + a L0 (A3)

Even though (A3) is formally no simpler than(Al) it is possible to find general

mappings which greatly simplify the surface boundary condition by relating the
given profile to one of a number of canonical forms in an auxiliary (&,, Ed

plane. Specifically the class of mappings which map airfoil-like profiles
into the unit circle have been found to be of great utility in two dimensions

and so are considered further for this application.

A3. UNIT CIRCLE MAPPING

According to Riemann's fundamental mapping theorem any profile whose

contour encloses a singly-connected domain (in the usual engineering sense
of e.g. Woods [A6J) can be mapped into the unit circle. However, for 6irfoils

and axisymnetric bodies of interest to engineering, the types of mapping of

sufficient generality and simplicity to be useful are quite constrained. The

role of these constraints has been discussed by James rMI and need not be

elaborated in detail here. Briefly, the desired characteristics are that:

(a) the mapping should reflect the existence of a finite trailing-edge angle

discontinuity (n - T), (b) the mapping derivative must - 1 as IzI ,

(c) the profile must be closed, and (d) the mapping derivative must have

neither zeros nor singularities on* o- outside the unit circle.

*In the general theory of mapping methods certain boundary singularities may

arise, but they are not of interest in this application.
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Let + = + in be the unit circle plane then it is easy to show that a mapping

which conforms to (a) - (d) is of the type

(1 - g(c) (A4)

where g(0) is an analytic function with neither zeros nor singularities out-

side C (the unit circle) and which -I as If -• . Many different forms of
g(0) can be used to generate profiles, but for the present purpose the more

general representation of g(c) as an expansion

g() + (1-Tb) + a2 + (A5)

is appropriate. That the first coefficient a, is (I - T/r) is a consequence
of the closure condition (c).

It is possible to prove in general that if the origin in the z-plane is

located at the trailing edge then, as a consequence of (A4) and (A5),

Z= .(I _12-T/71 1 + a2 Si () + a3S2 (¼)+ "". (A6)

where S1 S2 ... are polynomials of a particularly simple form. The nature
of these polynomials is not important here since (A4 will not be u.ed directly;

however, it does show that very awkward fractional powers will arise in the

analysis of the differential equation (,U) through the y factor which is the
imaginary part of z. In order to test the utility of this theory it was first
investigated for the cases which do not give rise to fractional powers, namely

= (blunt) dz + a2 a3
71 (but UT )- + - + ""(A7)

T=0 (CUSP)= 1- (I g(t;) -1 1- + + a 2++ (A8)

and the remainder of this study deals only with these forms. Fortunately, the
exclusion of fractional powers is not very important for most engineering

applications, because those bodies of practical interest which are not truly
blunt (like ellipsoids) usually have small values of T/W for which the rear

stagnation region (where the velocity falls very sharply to zero) is very
localized. Hence, it is of little importance since the boundary layer tends

to "smudge" the details very close to the trailing edge and the question of the
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"proper" combined flow in this region is an unsolved problem well beyond the

scope of this work.

If the forms in(A7) and(A8) are reorganized and integrated both yield a

series

B1  82 (Ag)

where C is an arbitrary real constant (again choosing the trailing edge as
the origin of z) and, for:

T = T (blunt), B1 = a2 , B2 = a 3/2, ...

(AlO)
= 0 (cusp), B1 = a2 - 1, B2 = (a3 - a2 )/2,

Naturally in dealing with the unit circle in the c-plane it is expedient to

use the angular variable (w) so that

= re iW , r = 1 represents the profile

but z is not, of course, an analytic function of r + iw, so to circumvent

this it is necessary to use the variable

c = ea where a = X + iw, r = e (All)

For axisymmetric bodies the reflection symmetry ensures that all the an and
Bn coefficients are real so that using (All) in M49) gives the general form of

y as

y(A~w) = eX sin w + BIe-A sin w + B2e' 2 x sin 2w + ... (A12)

to be used in the differential equation

- (y ) + 2- (y 0 (A13)

with the boundary conditions

€'e cos to as -
(A14)

0 when x 0
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Although this is a properly posed problem which has so far defied analytic
solution, the reduction presented in this section Is by no means exhaustive;

it is merely the simplest. Thus the question of convergence has been tacitly
ignored. Experience has shown that this breakdown is adequate for most pur-

poses, but it is clear that when T = 0, dz/dc has a higher order zero at
the trailing edge than when T = r. If, then, convergence is adequate for the
blunt cases when using (A9)or(A12)(which effectively disguises the zero factor)

it will be less so for the cusp cases. Furthermore,(A9) shows quite clearly
that one should remove a zero factor from the expression for z In both cases
for even better convergence. However, it is not possible to consider all

these ramifications here. As will be seen the basic method summarized in (A12),
(A13) and (Al4'is remarkably good and behaves exactly as these conjectures would

lead one to expect.

A4. SOME REMARKS ON DIFFERENT ITERATIVE SCHEMES

One classical method of solution is to seek a sequence of approximations

009 019 02 such that

0 = 00 + 'P1 + 0 2 +""

and, by substitution into(A13), separate a series of differential equations
each of which can be solved for the individual orders. The number of differ-
ent ways in which this kind of analysis can be effected is quite remarkable,
but the varying forms of the successive 0n functions and the manner and rate
of their convergence is even more surprising. Since the natural and obvioujs

assumptions do not work, it would be remiss net to include some brief discus-

sion of the general character of such schemes.

(a) For instance,(Al3) can be expressed in the form

y=2o + y AO + y wo = 0 (A15)

or symbolically as

yD0 + dydo = 0 (A16)

Then by identifying the successive terms of y = y + Yl + ... as

Yo ex sin w, Yl - e'A sin w, Y2 = e-2x sin 2w ... , and expanding (A16)
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one is led to an array which can be arranged as:

YOD0 + y0 D1 + YoD2 + ... + dyodo0 + dy0do1 + dyod2 +...

ylDo , YlD1 + YlD2 + .. + dyld~o + dyld 1 + dyld 2 +... - 0

Y2 D0 + y 2 D1 + Y2 D2 + ... + dY2d~o + dY2do, + dY2 df 2 +

S.. .. .. a(A17)

The simplest scheme which successively annihilates the left hand side of (Al7)
appears to be

Do =O

Y°D1  = -dy odf° (A18)

yoD2 = -ylDj - dyodo1 - dyldoo

and it is worth noting that each equation is of Poisson form and so readily
solvable. Furthermore, although (A18) is not unique in any sense because any
number of known yn's could be appended to the right sides, it is at least
consistent inasmuch as each order does not introduce higher harmonics than
required for the Laplacian part. That is, (A18) could well be solved by the

assumptions

00 = fo(A) cos W, 01 = fl(A) cos 2 - f2 (A) cos 2w, 0.0

and, proceeding in this manner with the proper boundary conditions, readily
leads to

o= 2 cosh x cos

= -(1 + O)e" cos W

2 -(1 + [ + A2)e-• 8 B (1 + 4,)e"- + e-3A] cos

and rapidly increasing complexity. It is clear that this scheme suffers from
obvious defects, among which the crucial ones are: (1) the analysis increases

rapidly in complexity and still requires solution of nonhomogeneous differ.-
ential equations at each step and so cannot be mechanized, (2) the convergence
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in a qualitative sense is poor since 02 has only just introduced a B
coefficient - merely the first - and varies only as cos w. Part of the
inadequacy of this scheme arises from the fact that each equation of (A18)
has an essentially two-dimensional character so that the "rate of introduction

of axisymmetry" is poor.

(b) Kaplan's scheme is much more sophisticated and has an axisymmetric
character in each approximation right from the beginning. It can be represented

in terms of the symbology of (Al7) by the sequence

(yo + yl)Do + (dyo + dyl)doo = 0

(yo + yl )DI + (dyo + dyl )dl = "Y2D0o - dy 2 d4o (A19)

(yo + yl)D2 + (dyo + dyl )d0 2 = -Y2D1 - Y3 Do - dy 2 do,
- dy 3d~o

which certainly penetrates the array faster than (A18). In fact this scheme
not only introduces B2  and cos 2w in 02' but the first term is repre-

sentative of flow around an ellipsoid, not merely an ellipse, and all the left-

side operators have a more nearly axisynmetric character.

Unfortunately this improvement in the character of each term has been
bought at the expense of enormous increase of complexity. Using separation
of variables on each equationo (A19) leads to left sides which give rise to
two Legendre equations involving the Legendre functions of both kinds. The

function of second kind (Qn) is awkward to handle, and the occurrence of
such combinations in the nonhomoge"eous part of each equation leads to

appalling complexity even for the third function 03. Thus further terms by
analysis would be effectively impossible and computer mechanization unthink-
able. However, it is interesting to note that, even so, Kaplan's approximation
gave a remarkably good answer for a Joukowski profile of revolution. This
provided an important stimulus to the work reported here, and is discussed
further in pairagraph 8 c . Kaplan's method in general also made it clear
that iterative/analytic methods of the type discussed above could never lead
to general analytical solutions unless some means could be found to make each

succeeding order depend only on algebraic steps rather than ones involving
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differential equations. For algebraic operations there is some hope of computer

mechanization so that the generality criteria of section I could then be met;
but where each step still involves partial differential equations there is none.

(c) The obvious assumption consistent with (a) and (b) above is

0 = fo(X) + f1 (X) cos w + f 2 (A) cos 2w + ... (A20)

since € must clearly be an even periodic function. However, substituting
this into (A13) and separating the harmonics leads to an infinite sequence of
equations each of which contains linear differential operators of second order.
Solution of such a system in practical terms seems out of the question, and
its intractable nature arises from the strong coupling between equations - in
the sense that the expression for fn contains all f's for other values of

n. This in turn is a consequence of the addition formulas for trigonometric

products and so cannot be avoided by any assumption of the form (A20).

(d) It appears therefore that (A20) is precisely the wrong kind of
assumption, and of course, the coupling problem arising from (A20) can be
alleviated by using Chebyshev* polynomials instead of trigonometric series,

since then the major algebraic steps reduce to manipulations with power series.

Putting
S=COS W•,e

then, the analog of (A20) is

0 =g0 (n) +'g 1("E) + g2 (9)E2 + ... (A21)

which greatly reduces the coupling problem but doesn't solve it. In fact, use
of (A21) leads to a system in which the equation for gn involves gn+2

which is again undesirable since each differential equation cannot be solved
outright in general terms which might conceivably lead to a reduction to
algebraic steps.

*In a quick spot-survey of 16 mathematics textbooks and assorted dictionaries,

the author found 8 different spellings. This was the most popular being quoted

on 37.5% of occasions!
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Examining the reduction to a suitable F,n form shows what the proper
procedure should be. Noting that y has factor sin w, (A12), let Y be

defined as

y = sin Y • (A22)

where

Y( ,) + B1 + 2 uI() + ... (A23)n _7
* and U (Q) is the Chebyshev polynomial of second kind, viz.

I ~Un)= sin(n + 1)w
nsin

Using (A22) and (A23) in (A13) then gives the transformed differential equation

Y {v 2 - yr ý + n2Yn0n + (I - )y 0 (A24)

with the boundary conditions

i 0 when n 1 (A25)

E, n when n

But if (A21) is applied to (A24) it can immediately be seen that the offending
factor which produces a shifting upward of powers is the term (1 - &2)€ &

coming from transformation of the v2 o. On the other hand the n-part,S~2
n 2nn + n4,1 preserves the same powers in each differential operator.

A5. THE ASSUMPTION FOR #

(a) On the basis of section Md above, the assumption

l , = nFo(&) + 1 (F() + ... (A26)0 F1( +

i is more logical than (A21).although both (A20) and (A21) appeal more immedi-
* ately to intuition. Using (A26) it is possible to produce a system which can

be reduced entirely to programmable algebraic steps. This reduction is
elementary but involved, and only the important stages can be recorded here.

Putting (A26) progressively into (A24) leads to the first step that

2- &OC nAo+ *1 a + ' 6n +
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where Anis the differential expression

(1n +2 F2F +n F n >1
n n nI

The temptation to use this as a basis for iteration (as opposed to the use of
the contribution from V 2 alone) on the grounds that it may introduce non-
two-dimensional effects quicker if one divided (A24) by Y, can be resisted
very easily by noting that the first member would be

A ~(I- C 2)F0"- 2&Fo + 0o = 0 (A27)

which does not have a solution proportional to E as it must if (A25) is to
be satisfied.

Continuing the development, we note instead that the product term involv-
ing V2 can be reduced in the following way. Write

Y 1= +~ 8 B 2 U1 + +l I. I + 02 +

and

V = + A 1 + A 2 ... = r(Ao + A)

say, so that the product becomes

y {v2 0 - &0 Tj2( + $)(A + A) = n2 (1 + OA + A + S&

where the final term aA is 0(n4 ). The other two terms in 0A24) yield
similar expressions with final products of 0(n-4 ); in detail, if

0 2a l

n 2

F 1  2F 2
n =F0  - 7--T _ = F0 - F

n~ n

then

n = n 2(1 - W}{F0  2 WF OF
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and, if

Y~r jai Ti!2 +no

IF; + Fi + = n(F' + F')

then
(1- • 2 )y0 = n2(l -n 2 ){('F1 + s'F'

so that ultimately a factor n2  can be cancelled and the differential equa-
tion reduced to

{A° + BA° + A + Fo- --- + (l - C2)a'Fo} + + 'F + (1 -•),B'F -- 0

(A28)
which can be written for convenience of discussion as

({H + [G] = 0 (A29)

In this expression the collection G contains only terms of at least O(n-4)
and the collection H starts from order zero. This separation of the higher-
order products turns out to be a very important step, since isolated study of
the dependence of G on the Aunctions Fn shows how the whole solution can
be reduced to mechanizable algebraic steps.

(b) However, the structure of G can be appreciated only by first examin-
ing the behavior of H. Interpreting H from (A27) and the definitions of

LA,B,F,F shows that

H = (A + Fo) + H-H + H2 + (A30)
n n

where

Hn = n -nFn + AOAn -Fonan + (1 -- C2)Fo~n (A31)

Since G is O(n-4 it follows that the solutions for the first three Fn's

are independeit of G and are given by

Ho =0, H1 =0, H2 =O (A32)
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and in particular the first of these according to (A29) and the definition of

A 0 (A27) yields

(I - E2 )Fo - 2CF° + 2F° = 0

This is a Legendre equationof degree 1 with the solutions

Fo = API(&) + BQI(&)

where YO and QI(&) are the Legrendre polynomials of degree 1 and A, B
are arbitrary constants. In fact,

= QI({) =/- +n( ~l4)Spl( ) = In -_ -

and since the second kind [Q(&D)] gives a logarithmic singularity at C =_+1
we set B = 0 on the grounds that 0 must be a smooth function. Then

choosing A 1 gives

Fo =O (A33)

so that the first term of (A26) becomes nc which generates a proper free
stream as n -, as it should according to (A25).

Substituting this back into (A31) shows that Hn can be reduced to

Hn = An -nFn - (n + 1)cn + (1 -E 2)
n n nn an'

= Ln - n{0(n + l)MUn(•) - (1 - )Un I(&)}

where Ln is the Legendre differential operator of degree (n - 1),

L kn " (1 - C2 )F" - 2EF I + n(n - 1)F (A34)

n n nn

Furthermore, the expression { } is a well-known identity

(n + 1)Uno (• 2 (I- )Unl_I(c) =nn()

so that, finally

n =n n n
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and therefore the complete sequence of solutions from (A29) must satisfy

L1 ! B1 U1

L2 = 2B2U2

L3 = 3B3 U3 -G3 (A35)

Ln = nBnUn - Gn

where we have wri tten
G 3 G 4

G = + 7 +
n n

since, as already noted, G is O(-4 ).

(c) With regard to the G n quantities arising from the higher-order

products it can be seen from (A28) that

G = SA + BF+ (- )B'F

and each of these products can be expanded into a power series in 1/n by

using the definitions of 6,A etc. to give

n
Gn+ 2 = + B {UIA r(n + 1 - r+Ur + (1- •2 )Ur'nl-.r (A36)

r=l

The details of how this can be simplified sufficiently to enable alge~raic

computation to be affected for arbitrary n will be considered later (section 9).

For the moment the important feature is that Gn depends only on Fn-2 An- 2 ,

etc., so the only coupling is to functions already known from previous lower

orders -which is, of course, the vital point of contrast to all the other

iterative/analytical methods discussed in Section 4.

Now the general solution of Ln = 0 which remains finite at { = +1 is

anPn-l(E
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where in is an arbitrary constant. Furthermore, a particular solution of

Ln n8 nnUn(&)

is
F, 1 -Bn T n(,)

since

(1 _ &2) - -2&Tn + n(n - 1)Tn = -nUn

where Tn(&) is the Chebyshev polynomial of first kind

Tn(d) = cos nw

Thus Fj,F 2 1AIOA 2 are polynomials in & and so, therefore, is G3 according to

(A36). However, it is not necessarily obvious that every F. is thereby a

polynomial since F3  involves the particular solution for a right side (G3)

which is (essentially) an arbitrary polynomial rather than a special ibrm.

But the highest degree in G3 is I so we could represent the problem for

F3 as

L3 = 3B3 U3 -Pl; Pl = AE + B (say)

to emphasize this aspect. A particular solution for

L 3 = P' F 3 = ql (say)

is q= (1/4)A& + (1/6)B which is still of degree I only. The highest degree

in G4 is &2, but now we know that the highest degree in G5 is still

only because the solution for F3 did not increase the degree of pl.

Proceeding in this manner it is clear that if a particular solution qn-2

can be found for the equation
Ln= p n-

Ln -2 •

where pn-2 is at most of degb-ee En-2 then every Fn will be a polynomial

of degree <n.
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(d) To see that this is the case, consider the superposition of solutions

of

Ln(q) - m-1 (A36)

where q is assumed to be a power series

q = q, + q2- + q2&2 + ••° (A37)

which may or may not terminate*. Operating on (A37) with Ln' and equating

C coefficients gives the, system of equations

Nql + 2.1q 3 = 0

(N - 2.1)q 2 + 302q4 = 0

N = n(n- 1) (A38)

(N -m(m - 1)})q + m(m + 1)qm+2 = 1

whose solution depends on the value of m in relation to n.

If m = n then qm+ 2 can be found from (A38) and therefore all the
tigher coefficients displaced by two. There is no way to find the coefficients

displaced by one, nor those for m, m-2, m-4, .... However, since we are only

interested in finding any special solution these can be taken as zero and the
recursive computation of qm+4' qm+6 ... provides a satisfactory procedure -

except for the fact that this sequence does not terminate.

Evidently if m > n all coefficients up to m + 2 must again be taken
as zero with the same consequences.

Fortunately, the case for m < n is different since qn+2 = 0 and we

may take all powers n, n-2, ... as zero until m is reached. Therefore,

the recursive sequence starts with qm and descends, viz.

*The choice of numbering in thecoefficients may appear a little unusual, but
this particular system will be used frequently since it is consistent with
the computer numbering and numerical steps.
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1
qm ?N N-m(m -1

(A39)

q(m -. 2)(m- 1) qqm-2 ( N - (m - 2)(m - 3)1 qm

until q, or q2  is reached.

Thus it is possible to obtain a special solution to (A36) which is a poly-
nomial of degree m - I provided wi does not exceed n - 1. As can be seen

from section c, this is just the case required where the polynomial on the right

(pn.2) is of degree at most n - 2.

Therefore, we have established inductively that:

1. Gn = Pn-2 is of degree at most n -2

2. qn-2 is of degree at most n - 2

3. Fn is always a polynomifl of degree at most n

On this basis it is more convenient tu use the p,q notation and write the

system of equations (A35) as

L1 = BIU 1

L2 = 2B2U2

L3 = 3B3U3 - Pl (A40)

Ln -nBnUn - Pn-2

The solution of this system is, according to section c, and the above

discussion,

F1 = 0(0 - BIT 1(&)

F2 = a2P1 (&) - B2 T2 (E)

F3 = 33P2 (&) - B3T3 (I) - ql(&) (A41)

Fn = nPn-.1() - BnTn(r) -qn.2(&)
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All of these are elementary polynomials and the only items standing in the way

of a general automatic computation scheme are the details of the pn 9 q n

calculations and the manner in which the boundary conditions must be satisfied

in order to determine the constants an"

Both of these items together with the general behavior of the solution

can be clarified by a brief examination of the first few approximations.

A6. STRUCTURE OF THE FIRST FEW TERMS

(a) Having seen that oo = nF0  gives a free stream, it is instruc-

tive to see next what the inclusion of the next two terms yields since these

are still independent of any p - q operations. Let ýl denote the approxi-

mation up to F, so that
1 1

I--: +" (aI - Bln) = n cos w + n (aI -B, cos w)

from (A41). Then

- n- " + (1 + B1 ) cos

\an )n (1

and it is clear that there is no choice of a, which makes this vanish for

all w unless it happens that B1 = -1, Bn = O(n 5 1). in that case if

= I 0 the mapping represents a zero thickness (plate) profile parallel to

the stream diPectiomn.

Taking the next term

2 +- l -+ B1 T1 (E)] + 1 Ta2C - B2T2(&)]

n
wl + L2

n n

so that

(4 2) = -a1 + (1 + B1 - 2a) cos w - 2B 2 cos 2u,
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It is impossible to choose a, and m2  to make this vanish for all w

unless B2 - 0. If B2  is zero, then the choice

cOl 0

1 + B

B I+ BI)

g2 Me _ - + L52 _ CosW (A42)

The case of ellipsoids is considered in more detail in the next section, but

at this point it is worth noting that if every Bn - 0 (including B1 ) the
mapping generates a circular profile and under these circumstances

2 + - s CO i = (r + -I)cosw

which is the correct potential for a sphere.

For any other body 02 is an approximation. It is not correct for an
ellipsoid when B1 ' 0 even though every other Bn is zero for such a body.

It is this curious feature that makes the ellipsoids worth further study in
their own right. If B2 # 0 then 02 is a poor approximation in general
because the boundary condition will be in error in the cos 2w term.

(b) Since it is not difficult to work out p1  and P2  by hand we next
consider 04. Leaving out the details, the calculated values of p1  and P2

obtained from (A36) and F1, F2  are:

Pl = 2B1 01 " P2 = (4 BvI2 + 6B2 lI)m

and then the procedure of section 5d gives

Bial I
q, = -Y"- 9 q2 = 3 (2B1Q2 + 3B201)E

so that the whole solution for 04 is

04 = 12 + n (uIPo - B T1) I '(2 - B2T2) + -. • - B3T3 -
n r)

+ (A43)
G 3 - B4T4 - [2Ba 2 + 3B2ul&)(
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Putting the Legendre polynomials in terms of cos nw and applying the boundary

condition then gives for each frequency in decreasing order

5
- 2Q4 + 3B3 a 0

-7 a3 + 2B2 ' 0

(A44)
3 4-Y 4 + 9 (2B102 + 3B2a1) - 2a 2 + B1 + 1 = 0

T (13 + "I181 -a = 0

with, as before, the understanding that the cos 4 w term cannot be accounted

for. The first two equations give immediate solutions

N4 ' SB3" a3 ' IB2

and then the last two reduce to the 2 x 2 matrix

(8B1 - 10)a2 + 1282al = 9B3 - 5(1 + B1)

3(B 1 -1)a1 = 2B2

which can be solved as

2 2

'2 -18 1i0) g3 1 -- 5( B I1 A5

This shows that the an coefficients will not in general depend linearly on

the 8n coefficientsand that some kind of small matrix solution will be

required for higher-order terms. In fact, the algebra up to the 4 x 4

matrix solution was carried out by hand, but only a few key points are recorded

for use in the next section.

The structure of *6 itself in terms of Fn' is clear enough from the

basic formula (A26) together with (A41). Expressions for ql and q2  have

already been given and the results for q3 and q4 follow from the calcula-

tion of P3 and P4  through (A36) and the procedure of section 5d. The

results are:
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q3 - C0 + C22& q4 D I Dr3

where

Co0 = 1 [308103- 4B2 + (288 + 44B3 )all

C2 = TT [9813 + lOB2a2 + 16B3 a,] (A46)

D- [ + (!,8 15 + 24B)% 2

4 (10084 + 3152 BI B?2)haJ
03 = '. [208Bl4 + 21B 2c 3 + 24B3 02 + 40B4 a1]

Satisfaction of the boundary condition on the surface leads to six equations
for the six an constants which again break down into two explicit formulas

for 05  and a6, viz.

S=5x 128 B 4x64

a6-- 6 x 63 5 15 5 84 (A47)

and 4 simultaneous equations for all a29 a33 Q4

3•3(45B1 - 63) + a2 (50B 2 ) + al(80B3) 64B4 - 5682m2
a 3(75B1 - 105) + a 2(270B2) + a1(140 - 140B1 - 180B3 + 140BJ) = -144B4

(A48)
(14(60B1 -90) + a3(63B2) + a2 (72B3 ) + al(120B4) 1 I0OB5 -108B3

I14(420B1 -63) + (3(1305B2) + a2 C4 3 + Q1C44 = IO00B5 - 420(1 + B1)

where the two coefficients C4 3 and C44 arel44

C43 = (-840 + 672B1 + 180083 - 6488 2

C44 = (10088 2 + 1210B4 - 1872B182 )

These clumsy results are included only for the algebraic arguments of the next
section and for completness in the sense that they are invaluable guides in
working out and checking general automatic computing schemes.
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A7. COMPARISON WITH ELLIPSOID SOLUTIONS

(a) The reason that it is worthwhile considering ellipsoids in detail is,

of course, that they represent the only simple general class of parametrically

varying axisymmetric bodies with exact solutions. Furthermore, there is a

curious feature involved when comparing the classical exact solutions with the

sequence ý 0o4 ... developed in the foregoing seetions. This arises in the

following way. With all Bn a 0 except B1 , separation of real and imagin-

ary parts in (A9) and putting A - 0 gives

xs = (1 -1) cos W, yS - (1 + B1) sin

if we choose to take C = 0 and so shift the origin to the usual central

point for ellipses. Thus$ keeping the x-axis always aligned with the flow,

semi-major axis = a = I - B1

semi-minor axis = b = 1 + B1

showing that -1 _1 < +1, with 81 = 0 giving a circular profile as noted

in section 6b, and -1 < B1 <_0 giving the usual range of thickness ratios

representing "ovary" ellipsoids. Now it is apparent that the foregoing theory

gives *o02e•4 ... directly in terms of B1 irrespective of whether B1 is

> or < 0. However, the classical results (e.g., Milne-Thomson [A7]) show

that the analytical form of solution is different according as a > b or
a < b, i.e., according as B1 < 0 or 81 > O.

This situation can be clarified by "expanding" the classical solutions in

some way and showing that the expansions so obtained agree with o204 .
irrespective of the sign of B1.

(b) The classical solutions can be expressed by means of elliptic coord-

inates as follows:

o When a > b (-1 < B1 < 0) put B1 = -e- 2 p andtwrite y - cosh (x + v).

Yo= cosh u then

2e1 2 In NX + 1)1(y -- 1)] -c IS= e~uco ,,y-112 ln[(yo + 1)/(Yo -1M -- [yo/(Y0,-l)]

(A49)
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o When a < b (1 >B >B0) put BI - e"2u and write o - sinh (A + •),

00 sinh P then

S2e' Cos W - [a tan1 (l/aq)_-1] (ASO)
2 [tan' 1 (l/ao) - a /(a+

A reasonable supposition is that if (A4g) and (A50) are capable of

yielding expansions which can be matched to o 0 92" 04 .... then the case of

large A should be the one to examine. The first term of (A49) is

e- (eA+ + e'-") cos w -(ex + e- e-X) cos W - (n -n)cos

in the earlier notation. Thus, temporarily denoting the constant in (A49) by

h we have

S* = COS W n(-- )-h(jln.y - 11)]

If x and p are both taken as large then x + p is large and it is natural

to put C = e-i+1) and find the expansion for small c. The term in x + p

is then expressible as

In +1 I = I (I1+ r) In(I +E l 4 C2 8 4 126

Y. +, 3 .I -

or, since c 2 e-Zpe" 2 x

CO W c n + h 1B 1 + I2B 1 (A51)

In order to derive consistent comparisons for individual orders from (A51) it

is convenient to proceed in a slightly unusual manner because of the appar-

ently very complicated nonlinear dependence of the o4*6 terms on B1

through the an constants (see e.g. (A43) and (A44) for 04 and 14).

Since h is the constant appropriate to an infinite number of terms, it seems

reasonable to argue that one should designate h2 , h4 , h6  as the constants

appropriate to the orders n, n4 n6 and then these can be determined by

noting that every order must individually satisfy the surface boundary

condition. This procedure is certainly consistent with the philosophy under-

lying the structure of 0?%,0*6.
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For instance, on this basis (AS1) yields

2 C OS - ) + h2 T (A52)

and then we nmust have

S3(1 + B1 ) (A53)
l ~ ~~h2 = 8B(A3

Similarly ¢4 and %6 are given by (A51) with

-15(1 + B1) 105(1 + B1)
h 1 h6  2 (A54)1W, 3 T 6 8B1 (35 - 28B1 + 271 )

For the other case (A50) let the constant be denoted by k then

* = cos W n[(n !-) - k(a tan-' 1)

and again let c = e"(A+P) so that

(atn 1  1 1 2c i 42 ~84 12 6+
G -1C)-C

This time
m2 = e- 2Ue12e = Bl/n 2

mC

and if this is substituted into the expansion above the same expression as
(A51) results. Since the constants k2 , k4 , k6 ".. would be chosen by the
same argument it follows that (A51) through (A54) represent the successive

orders of approximation for both cases, thus resolving one aspect of the
curious feature mentioned in section a.

(c) Next it is necessary to show that the 029 049 %6 of section 6 are
consistent with (A51) through (A54). In the case of 02 it is obvious by
inspection on comparing (A42) with (A52). For 04 put B2 , B3  to zero and
then n3 and u4 are zero according to (A44). Furthermore, according to
(A45) a = 0 and

5(1 + Bl)
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so that if these results are substituted into (A43) the formula for ý4

"becomes

CO rl9-B,\5(l + B i) ( 2B1 ]A5

which can be seen to be identical to (ASl) with h4  given by (A54).

Finally, for 06 with all Bn coefficients zero except BP, the equa-

tions (A47) and (A48) for the an's reduce to

a6 = O, a5 = O, 014 = O, a3 0 , al = 0

and

105(1 + Bl)

m (210 - 168B1 + 162B2)

Then the expression for 06 becomes quite simple because q3  and q4

simplify to

9 2
q 3 =0, q4 = 3-- B, 2 C

thus giving

a6= cos + n(- + 2 ( - B 1 a+2 B 1 (A57)
q n n

Using the a2 given by (A56) in (A57) it is easy to see that this result
agrees with (A51) and (A54) showing that the classical expansions agree with

the algebraically derived approximations ý2' 041 06 of this theory for

"ellipsoidal bodies.

(d) Finally, the comparisons will be complete if we can show that the
constants h2 , h4  and h6  are progressively better approximations to h

and k, the exact constants appropriate to an infinite number of terms.
Denoting e-0 by E (small), the first form of constant from (A49) is
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2e-W
{1/2 in [(y + 1)/(yo - 1)] -[(yo)/(yo -1)]}

2 ~ (A58)
[8/3 + (24/5)c + (48/7)6 *.

which can be written in the forms

h 1 (1+ B) 2

B1[8/3 - (24/5)Bl + (48/7)B -... ] B1[8/3 - (32/15)Bl + (72/35)B2 ... ]

(A59)

since c2 = e- 2P = -B1 . Progressively including higher-power terms in (A5)
gives

3(1 + BI) 15(1 + Bl) 105(1 + Bl)mi (40 1 321 1I h 8B,(35 - 28B, + 27B

which are identical to (A53) and (A54). The expansion for k in E2  is
the same as (A58) except for alternating signs which give exactly (A59) again
since this time E = +BI.

Thus both forms of classical formula give the same expansion for the
constants of each type. Of course the two forms for the classical formulas
result from the same general argument in more general complex variables so
none of this is really very surprising. Nevertheless this topic cannot be
discussed further here. We have shown that ellipsoidal bodies are correctly

represented by the sequence of potentials in this theory. It is more
appropriate to inquire about the convergence of this sequence, arid this can
best be discussed in terms of the velocity.

A8. FORMS OF THE VELOCITY

(a) The general theory for o as given in sectionsAl through A7 will be
of little value unless we can be sure that the velocity - and in particular
the surface velocity - can be computed accurately - without problems from the

trailing edge singularity for instance. For the present it is only the
surface velocity (x = 0) which is of interest, and denoting magnitude by Q
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we have from section 3

Q( )m- 03a

In the case of the conformal mapping used here

jdzjBhl= h2 = •

and on the surface • = e i so that

h (0) = dz = ds

where s is the arc length along the profile measured from the trailing edge

(which is taken as the origin in all general computations). Thus using s as

a subscript for surface value

s: - a/ (A60)

and the need for caution arises from possible zero values of ds/dw as a

consequence of the assumed forms for the mupping derivative [(A7) and (A8)].

Setting • = ei in (A7) and (AB) gives

T = W (blunt) ds = + a2 cos 2w + ... )• + (a2 sin 2w + 112

(A61)

=0 (cusp) = 2 sin 1 + cos W + a2 cos 2w + ... )2

+ (sin w + a2 sin 2w + .. )2 12 (A62)

so that ds/dw does indeed vanish at w = 0 when T = 0. Yt is zonvenient

to note that (A61) and (A62) can be expressed in terms of the surface modulus

of the g(j) function of section 3 for both cases, that is:

ds = 1gs(M)l if T = iT

(A6,3)

T- = 2 sin ywIg(w) if T = 0
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where Ig s(w) is a positive periodic function which has no zeroes or
infinities- as is obvious from (A61) and (A60).

Now the form of 0 given by (A?3) and (A4i) has the natural terms con-
sisting of cos nw and powers of & = n.os w. Thes. latter can always be
expressed in terms of cos w, cos 2w ... by using the reverse transformation
for the Chebyshev polynomial of first kind, so that it is always possible to

express 0 in the form

* = G (N) + GI(n) cos w + G2 (n) cos 2w +

by a simple reorganization. Consequently,

1-= -• [G1(n) sin w + 2G2 (n) sin 2w +

from which a factor sin w ran be entracted leaving a modulation term which
is a function of the Chebyshev polynomials of second kind. That is,

5_0 = - sinw G(&,n) (A64)

where

G(,rn) = Gl(n) + 2G2 (n)UI(() + 3G3 (n)U 2 (•) + ... (A65)

so that the velocity from (A60), (A63), (A64) can be written

Q gs ( ,I) if T -W (blunt)

.= cos (2) Gi,) if T 0 (cUsp)

and both of these forms are cociputationally trouble free for all w. As
expected blunt bodies have stagnation points at both ends, whereas a body with
a cusp trailing edge has a finite nonzero velocity at thdt trailing edge

(W -0).
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(b) For the ellipsoids the results of section 7 can be used to give some

idea of the maximum velocity convergence. It is interesting to compare the

successive terms with the two-dimensional value which can be denoted as the

zero-th order approximation very conveniently. The complete solution for two

dimensions is,of course,

= (n + ÷ cos w = 2 cosh X cos w

so that, dropping the now unnecessary 's" subscript, the zero-th order

approximation to surface velocity is

Q 2 s " or Go =2 (A65)

irrespective of the shape. For the order 2, 4, 6 terms on ellipsoids the

G function surface values follow from (A42), (A55), and (A57) leading to

the sequence

Go= 2

- (I - BI) + 1 (1 + BI)

) 1 - 28 ) 
(A66)

=4 (1 -Bl) + 1 (1 ÷ 81)\r--

1 35 -14B 1  B
G 6 (1 - B1 ) + 1 (1 + B1 ) 1 + 9-

As an illustration, the case of ellipsoids of fineness ratios a/b = 3/1 and

a/b = 1/3 are given in the table below. Exact values for G are computed

from (A49) and (ASO) by setting X = 0 to give the slightly simplified forms:

G = 4e' ; B1 <0 =-e- 2U(a > b)
2 cosh • -sinh 1 in C(cosh p + 1)/(cosh - 1)]

........ B1 > 0 e -.211 (a < b)

cosh2 u tan 1 (1/sinh P) - sinh 8

whilst the values of Igs(,)l at w = ff/2 corresponding to the point of

maximum velocity are:
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when a 1 b I then Ba=T b T ~ the B Y1 9-~ s~()

when a = , b = then B1 z+ ; gs +

The results are summarized in the table below with the % errors defined as

% error = (approx value - exact value) x 100' exact vlue

Table of G Values and Maximum Velocities for Various Orders

of Approximation on Two Ellipsoids

Slender Ellipsoid a/b = 3 Blunt Ellipsoid a/b = 1/3
Order G valus X ax Qmax

Order G values Earr % Eror G Values Vaus % Error

0 2.0 1.333333 +18.8 2.0 4.0 +45.8

2 1.75 1.166667 +4.0 1.25 2.5 -8.8

4 1.714286 1.142860 +1.9 1.50 3.0 +9.4

6 1.698431 1.132300 +0.9 1.317568 2.635136 -3.9

Exact 1.682953 1.121970 - 1.37!324 2.742648 -

As an illustration not too much should be deduced from these tabular
values. Perhaps we should just remark here that the signs oscillate for the
excessively blunt case (a/b = 1/3), but not for the more usual type of body
(a/b = 3/1), and that convergence is adequate but not impressive. In
section 9 detailed results will be presented for a variety of bodies so
Judgment should be deferred until then.

(c) Before passing onto general computation one other remark concerning
accuracy is worth drawing attention to. Naturally the convergence of velocity
is crucially dependent on the convergence of the Bn coefficients. Some idea
of the behavior of these numbers can be gained by brief consideration of the
Joukowski profile case on which Kaplan (section 4) obtained such good answers
with a scheme essentially sensitive only to B3. A Joukowski profile has the
exact modulating function
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+ 1j d(1 -d)g(¢) ~d -ý 1 )2

(see[A4]) where d is real for a symmetric case and 0 < d < 1. Therefore,

the expansion coefficients are

an =ndn'1 - In - l)dn; Bn = -dn'l(1 - d) 2

When Idi Is small it is clear that the convergence of the Bn numbers is

good. For instance in the case quoted by Kaplan d - 0.15, giving

B1 * -0.7225, B2 = -0.1584, B3 = -0.01626, B4 = -0.00244

The dominant "ellipsoid-effect" or leading term is proportional to
I + B1 = 0.2775 so the amplitude ratio of the first neglected term in Kaplan's

calculation would be essentially proportional to

0.00244 1

which qoes some way toward explaining the satisfactory results obtained with

such limited sensitivity to the infinite sequence of Bn coefficients.

However, it is not difficult to get cases of practical importance in

which the On convergence is very much worse than this, as will be seen in
section 10, where test cases for the general solution having deliberately

chosen peculiarities are presented.

A9. GENERAL CALCULATION SCHEME

(a) The overall structure of the general calculation scheme is based on
the sequence of operations already described algebraically in the earlier

sections (5 through 6). The computer program was written in Fortran IV for

use on the Douglas IBM 370/168 system and can be regarded as proceeding by

the following stages:

1. Input Bn coefficients and other data necessary.

2. Compute double subscripted arrays for the coefficients of special

polynomial used (Pn(c), Tn(&), ..* .
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3. Fill the first three orders F1 , F2 , F3 of the solution variables

using the algebraic answers discussed in Section 5b and c. All

solution polynomials, unlike the special polynomials in 2, are

functions of the an constants and so must be represented by

3 subscript arrays which store the coefficients. Thus, F, p, q,

are all typically represented as

Fn(r.) = F n,() + Fn,2(&)a1 + ... + Fn,n+l(&) n

where each polynomial Fn,t(0) is of the form

Fn,i(0) = fn,i,1 + fni,2& + "0 fnin+l"n

so that the coefficient array fn,t,k requires storage N, N + 1,

N + 1 if N is the highest order desired. Since three subscripted
arrays use a lot of core space,some trouble was taken in the program

to minimize the number of such arrays actually used. The current

version only requires two; but even so a great deal more could be
done to improve the efficiency of this particular version of

program.

4. Starting with n = 4 each Fn coefficient array is computed using

(A41) and the p and q functions of order up to n -2. In

addition the p function of next highest order is computed at

this stage and the coefficients stored for future use.

5. A subroutine computes q coefficients from p coefficients by

using the algorithm of section 5d and these are also stored for

future use as in 4.

6. When the Fn functions have been computed up to the order desired
(N say), a separate subroutine handles satisfaction of the boundary

conditions by first converting fn~i,k to ýn,i,k such that

F no(E) = f n,,1 + fn,i,2T1 + fn,i,3T2 + ... fn,t,n+lTn

which is an appreciable simplification at this stage since Tk is

merely cos kw. Using the arguments of section 6, a set of N - 2

simultaneous equatinns for the a n constants follows, which can be
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solved by a simple standard matrix inverse of low order operating

wholly within core.

7. A final subroutine computes and outputs the surface potential and

velocities using the formulas of section 8.

This description of the essential steps followed by the program is only

intended as an outline fordiscussion purposes; but most of the programming

involved in the ommitted details is elementary and does not deserve comment.

However, one aspect of this scheme does deserve brief amplification.

(b) The central operation which includes all the "difficult" part of the

whole theory (essentially all the nonlinear aspects) is the computation of p

from the extant Fn functionsaccording to (A36). It has already been

remarked that not only does the whole theory hinge on the fact that each F
depends (via p) only on previously computed F's, but that also it is
possible to prove that F n(i) is a polynomial of degree at most n

(section 5c, d). However, the boundary condition procedure can always be
reduced to a matrix inverse of order (N - 2) x (N - 2) with aN and oN-1

determined directly, because, in fact, the pn-2 which effects Fn is

actually only of order n - 3 rather than n - 2.

In section 5c it was noted that if the special solutions q were poly-

nomials given a polynomial p of degree at most n - 2, then the validity
of the whole procedure could be proved inductively. That pn(--Gn+2) itself

is of degree at most n is obvious from (A36), but the additional vanishing

of the highest order term requires a little closer examination. Denoting

n - 2 by m, (A36) can be rewritten
mPm K2 Br {Ur-I~m+l-r + r(m + 1 - r)Ur.IFm+1.r + ( - 2)UriF'

PM r (ur-P~.m+l-r}- MIr

r=1 (A67)

and each major contribution is a product of two polyncmials. A special poly-
nomial product subroutine keeps track of the coefficients for this frequently

used operation, but for the highest order terms alone the answer can be

written down directly. Nevertheless (A67) is not the best form of either the

numerical construction or the algebraic scrutiny. Using the expression for
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An in terms of Fn (section 5a), it is easy to reorganize (A67) into

m

pm E Br (1 -__)Ur-iF~r0ir + (m + l)(m + 1 - r)Urilrr (A68)
r=1

which is the form actually used in the program. Furthermore, it is obvious
from the structure of F. (A41) that the highest order term is always

contributed by -Bn T n() and so is always

.2 n- Bn

Consequently the second part of (A68) contributes to E M the amount

m

E- BrBm+lr(m + l)(m + 1 - r)2m-l (A69)

r=l

The highest order term in Ur-lFlr is, by the same reasoning,

-Bm+lr(m + 1 - r)2 m-1&m-

so that the contribution to &m from the first part of (A68) must be

m
+ E Brom+lr(m + l)(m + I - r)2m-l

r=1

which exactly cancels (A69), showing that the cm term in Pm vanishes.

Thus the computing scheme can, as explained, make use of this information to
keep the acn-matrix as small as possible. The cases of N = 4 and 6 as
worked out in section 6b are illustrations of this feature.

A1O. SOME EXAMPLES OF DIRECT VELOCITY CALCULATIONS

(a) In order to test the theory a number of profiles were generated by
using a modification of the "pole airfoil" theory reported in[A4]. This pro-
cedure is extremely flexible since poles and zeros of the mapping derivative
can be chosen at will within the unit circle in order to generate bumps and
dimples on the profile. The point of all this is, of course, to provide test

cases of sufficient character to reveal more information about the accuracy
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than can be obtained, for instance, by only using Joukowski profiles. We have

already seen that this can be very misleading (section 8c) and since most
common test shapes are members of this larger class of pole airfoils (profiles)
it is considered to be a useful adjunct to the whole theory.

For the test cases described below the form of dz/dc started out as a

quotient of isolated linear groups, viz.

dz ( -'cI)(C-c 2) "'" (. -cm) Icn1, Id I <1 (A70)

m .T -- dl)(c - d2 ) ... -dm)•n A

where the first factor can be used to generate blunt or cusped shapes - since
the latter is the only allowable example of the singularity being on the
surface; the choice then being

Cl = 1, d =O0

to give the usual type of cusp.

Otherwise various criteria apply to the choice of cis c2 , ... •
dig d2 9 ... required to generate specific effects which need not be explained
here in detail (see[A4]), except to note that the generation of extreme surface

convolutions can only be achieved in general by having some JcnJ and some

""dni very close to unity.

Equation (A70) can be expressed as
ii

ds _ m Ak

J C 1 + kdk1 < 1 (A71)
•Ik=l

which is the fundamental pole form where the quantities A,.' are the pole
strengths. A simple partial fraction program determined th'ese strengths from
(A70), and then (A71) can be used to give an exact formula for the shape. In
addition (All) lends itself to an immediate expansion which is uniformly
convergent in Jtj > I since every Idkl < 1, viz.

dza, a 2dz: = +- ' + (A72)
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where
m

an E n-l (A73)
nk-

These coefficients show that the ultimate rate of convergence is controlled by
the largest JdkI and therefore it follows from the remarks above that
extreme convolutions will have poor convergence. In the context of this work,
of course, everything depends on the significance of the words "extreme" and
"poor." This subject is best left to the examples given below, except to note
in passing that the Bn coefficients used for the theory here are defined
directly from (A72) by integration. Thus

= B1  B2

agreeing with (AM), and so

Bn-= n= 1,2,...n

(remembering that a1 = 0 for closure) which shows that the Bn coefficients
converge faster than the an coefficients.

It should be noted that this system of test cases generates exact shapes
and exact Bn coefficients whose rate of convergence can be controlled and

studied. Clearly this is necessary for the testing phase, but it does not
represent a bias in favor of the current method. Any profile enclosing a
schlict singly-connected domain can be mapped into the unit circle,and it is
a trivial matter to write such a mapping program and to make the associated

Bn coefficients available for input to this theory. In this sense neither
is the special system used here a restriction of generality. A mapping pro-
gram is available for finding these coefficients, but was not used in the
cases described below. This question will be considered further in the dis-
cussion of the inverse (design) mode (section 11). 4

b.l. The first figure (Fig.Al) shows what might be described as a very

bland basic case (body 1) in which the profile was a smooth blunt
shape generated by
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c 1 - 0.9, C2 m -0.5

d1 = 0, d2 = 0.4

The velocity distribution based on only 10 Bn coefficients is shown

compared with the very accurate "higher-order Neumann" method of
Hess [A2). Evidently, agreement is good for a trivial investment of
computer effort because the "hardest" task involved in this theory
for only 10 terms is the inversion of an 8 x 8 matrix*. For the

Neumann runi and output stations of the method of this appendix, 101

points on the half body were used. Of course, the blandness of this

case leads one to suspect that it is particularly favorable to the

kind of theory advocated here, just as the Joukowski case used by

Kaplan (see section 8c) turned out to be particularly favorable in

that context. In fact, the rate of convergence for this case is

unduly good. At the64th station (very close to the maximum velocity)

the zero-th order approximation (two-dimensional) is 1.520655 and the

succeeding orders are:

Order 0

2 1.226915

4 1.227366

6 1.225472

8 1.225760

10 1.225739

showing precisely the kind of weighted choice one should avoid in

test cases!

2. However, the results obtained for the second body (Fig. 2) continue

to show excellent agreement even though only 10 terms are used. This

body is a perturbation of the basic case (1) in which a bump was gen-

erated deliberately near the nose - as can be seen from Fig. A2.

The resultant sharp peak in velocity is produced accurately In detail

"and appears to be a good demonstration of the excellent convergence

properties of the method.

*There is little point in trying to isolate proper computer CPU times from these
runs because they are so small that the figures are largely obscured by vari-
ous accounting and other semioptional features. For instance, in this run the
CPU time was quoted as 0.011 minutes and the I/O as 0.044, but velocities of
order 0, 2, 4, 6, 8 and 10 were individually computed and stored which is
typical of many options not always needed.
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3. Body No. 3 Is a further perturbation of even more extreme character

(Fig. A3). As can be seen, the velocity shows quite violent response.

to the artificially created bump-dip-bump, but the theory again gives

remarkably good results with only 10 terms when compared with the

higher-order Neumann. Obviously, this case is a still better demon-

stration of the relative insensitivity of the basic method to higher

order Bn convergence.

4. The final case is interesting because it shows how a cusp is handled

by the theory. The body is essentially similar to case 2 except that

the Bn sequence terminates at B3 and that there is a cusp. It

can be seen (Fig. A4) that agreement (again with 10 terms) is excel-

lent everywhere except close to the trailing edge. A much greater

number of terms is required to give a good answer in the immediate

locality of the cusp. This is exactly what would be expected on the

grounds of the discussion given at the end of section 2 where it was

pointed out that if the structure of the Bn coefficients gave good

answers for the nonsingular (blunt) case then obviously it would be

less satisfactory for cases where a further zero term should be

extracted.

These cases cannot be considered exhaustive and evidently further work

should be done, particularly for arbitrary bodies where the mapping program

to determine the Bn coefficients is required first. To some extent the
4esign cases considered next relieve any residual anxiety that perhaps the

above results were subtly (unintentionally) biased in favor of this theory.

Accepted at face value, however, the above results show very clearly the

excellent convergence and economy of the theory.

All. DESIGN (INVERSE) OPERATION

(a) As pointed out in Section 1, one of the important advantages of

analytical solutions in engineering is the readiness with which they can

usually be converted to a design (inverse) mode. In the context of airfoil

theory it happens that the design problem, where a desired velocity is given
and an associated shape determined, Is both exact mathematically and non-

"iterative. Airfoils designed in this way are those which - in a least
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squares sense - give velocities "closest" to the desired input and as such

have recently proven to be of great practical value [A8].

In fact, interest in design methods for axisymmetric flow was one of the

original stimuli for this study, particularly as there was no design procedure

of any kind available at the start of this work except in two dimensions.

However, recently a procedure for designing axisymmetric shapes by simply

iterating a direct (Neumann type) method has finally been perfected by Bristow

[A9] and we are fortunate to be able to compare a few cases of Bristow's method

and the procedure advocated here.

But first a brief description of the inverse mode for the current theory
is needed. Once again theimportant feature is the decoupling of the purely

geometric aspect and the velocity aspect. In two dimensions this decoupling is

complete, whereas for axisymmetric flow the gradient of € still depends on

the Bn coefficients. Thus, unlike the two-dimensional case, the design

procedure for axisymmetric flow is iterative. The steps used in the current

program version are very similar in character to those needed to determine

the Bn coefficients (i.e., the mapping) from a given profile, or to find the

flow about a given (two-dimensional) airfoil. As such they constitute an

iterative scheme belonging to a general class whose convergence and accuracy

properties have excellent precedents from two-dimensional experience. Briefly

the procedure is based upon the central idea that if ds/dw can be found at

a certain stage then the appropriate an coefficients can be calculated
directly by employing a transformation which is common in two-dimensional

mapping theory. Looking at (A61) and (A62) it might be thought that, given

ds/dw, there is no way to determine the an coefficients directly, but this

is not the case. The argument by which these coefficients can be determined

is typical of the great power and flexibility of mapping methods and is rarely
appreciated as such.

"(b) Briefly, if dz/dc is given by series of the forms (A7) and (AM), 4

thenS~dz
-T = 7 (blunt) ln a-= In g(c) = g(c)

dz 1 -1) + f(-)
= 0 (cusp) lndBuln (-)2+ n g(c)uIn(1f(0
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and in both cases g(c) is an analytic function for 1cI > 1 which 1 I as

cI -÷ -. Thus f(c) is an analytic function for 1I > 1 which ÷ 0 as

I rj -= ~ and can be represented by

( a a bl b2

In g(V) = In I + -+ + = f() -+ 2 + (A74)

In a relation of this form the determination of the a. coefficients given

the bn or vice versa is a purely algebraic procedure which is easy to
compute. On the other hand, the connection between the surface values of fs
and gs is fs =In gs so that if fs = us + ivs (say) then

us = In gs ; vs = arg gq

Therefore, using (A63), the first of these gives

= In ds (T = I)

= In •--n 2 sin (T = 0)

from which us can be calculated. But according to (A74) us is the real

part of the bn series with real coefficients (for the axisymmetric case -

by symmetry) giving

us = bI cos w + b2 cos 2w + ... (A75)

where bI = aI = 0 if T = 7r or bI = a, = 1 if T = 0 due to the closure

condition (A5).

Thus it follows that the bn coefficients can be determined directly
by Fourier analysis of us and therefore the an coefficients indirectly by

inversion of (A74) as remarked before. In addition, the magnitude of bI is

clearly a measure of "compatibility" at any star. of the iteration or, in the

particular case of two-dimensional design, a direct measure of the plausibility

of the desired velocity distribution.*

*The inverse problem is not unique in either two-dimensional or axisymmetric
flow. The best one can expect is some minimum measure of closeness to the
desired input and a least squares Fourier criterion has been found very satis-
factory in two dimensions (see, e.g. [A8].
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(c) The steps in the iterative design mode for the theory developed here

can then be described in the following terms:

Step 1. Guess a set of Bn coefficients. The runs described below all

use those for body 1 (section lOd) as a starting system.

Step 2. Calculate Ris /Dw by using (A64) and (A65). For this step the

major part of the basic direct program as described in section 9a

is used as a subroutine. Only number 7 is left off.

Step 3. Use (A60) to give ds/dw and hence us(W).

Step 4. Find the bn coefficients from (A75) by Fourier analysis of

u s() according to section b above. For this step a small Fast

Fourier transform subroutine tailored for ordinary engineering ucage

in Fortran IV was used. (In a modern computer context this has to be

recognized as one of the big advahtages of Fourier methods in

general).

Step 5. From the bn coefficients call'ulate the an coefficients and

hence the Bn coefficients which in turn define the new velocity

and associated profile.

Limits on convergence were defined by testing the RMS changes in yj. xj and

Qj. Experience has shown that usually velocity is the more sensitive param-

eter and that it is vury important not to impose a too stringent requirement

on accuracy. In fact, a limit of 0.001 is quite sufficient for most engineer-

ing purposes and is usually safe. The importance of adequate cautiontr itera-

tive procedures of this kind derives from the fact that such schemes very often

contain numerical steps of a very commonplace nature (e.g., interpolations, quad-

ratures, ... ) which are in fact much less accurate than the overall theory or

truncation thereof; but which frequently get overlooked. This remark does not,

c f course, apply to the Fast Fourier Transform routine used here which returns

11 significant digits. However, this particular theory does have a nonlinear

dependence on the Bn coefficients, no scaling orn the higher-order contributions

(where the roefficients of the Legendre and Chebyshev polynomials become large)

dnd a very early truncation. These are reasons enough for not overdoing the

converg..nce criterion.
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A12. RESULTS OF INVERSE CALCULATIONS

(a) As An obvious first check the inverse mode was run on all the direct
cases described before (section AlO). Convergence was remarkably good again
with only 10 terms, and most of the results cculd not be distinguished from
the input on any reasonably plottable scales. Body 3 was the only one with
sufficient character to be interesting and it was the first one to be run
with direct comparison with the method of Bristow CAg]. Hence it is the only

one worth more discussion here.

In fact, Fig. 5 shows the original exact body and exact velocity (higher-
order Neumann) used for input to the design process. It also shows the results

of 13 cycles of the current thoery compared with 20 cycles of Bristow's method.
From this figure it appears that after 20 cycles the Bristow method still has
a long way to go and that quite small deviations In velocity near the nose are
associated with quite large errors in overall thickness.

On the other hand, the method advocated here is very good after only 13
cycles (with no under-relaxation factor, see section b below). Furthermore,
it is quicker since the CPU times were approximately in the ratio 1:10.

(b) Another case of design operation is shown in Fig.A6. It is particularly
interesting in that it represents a more typical situation in which the designer
inputs the very crude straight line distribution (Fig. A6) knowing full well
that it is impossible in detail, but that it represents the kind of levels and
gradients he requires. This figure shows that after 7 cycles of the current
theory and 20 cycles of Bristow's the desired input is very nearly bEing
ach:eved. However, it is clear that the two body shapes do differ near the
trailing edge. This is a reflection of the same situation as encountered in
section a above - namely that the Bristow method approaches more slowly to
the limit, a fact that is made apparent on Fig. A6 by noting the closeness of
the agreement betwean the higher-order Neuamnn anriers for the 7 cycle body and
the 7-cycle velocities. Once again the CPU times were approximately in the

ratio 1:10.
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Some details about this run are worth noting. Firstly, it should ýlot be

thought that such a close match to the desired input is possible in general.

The case shown is one which was known to be close to a "real" velocity distri-

bution by experimentation. Had the desired initial rise and trailing edge

values been associated with a level of say 1.2 instead of 1.05, then the design

theory would have shown how far from possible such a request was. It would also

have returned some "closest" match, leaving it up to the designer to use this

information to Introduce a compromise. Secondly, the remarkably good converg-

ence shown for the current theory may not always be achieved in practice.

Fig. A7 shows the behavior of the B1 coefficient and RMS y error as functions

of cycle number with and without an under-relaxation parameter of 1/2 whose

need was rather obviously indicated. There are some intuitive grounds for

regarding an "average" as a good choice; but, of course, there is no mathemat-

ical ground for assuming that this value is optimum in any rigorous sense.

Obviously more experience with the method is desirable. Thirdly, it should be

noted that by ordinary engineering (fluid mechanic) standards, these straight

line inputs are excessively crude having discontinuities in slope and other

features quite uncharacteristic of analytic functions, It is therefore a very

convincing argument in favor of mapping and Fourier analysis methods t;iat they

can treat such unfavorable distributions smoothly and accurately.

A13. CONCLUSIONS

A theory for the general solution of axisymmetric incompressible potential

flow in terms of analytic functions of elementary type has been presented. For

the cases usually of importance to engineering (blunt and cusp trailing edges)

comparison with existing numerical methods has shown that with only 10 terms

excellent results can be obtained for negligible expenditure of computer time

on bodies with more character than usually encountered. When used in the

design (inverse) mode the method is apparently quite satisfactory being both

quicker and more accurate than the iteratlve-Neuamnn algorithm of Bristow

which is (as far as is known) the only alternative nonlinear design process

for axisymnetric flow.

Clearly more work needs to be done to explore the full range of this method,

and, maybe it would be worthwhile studying the solutions for arbitrary

(0 <_ T < ) trailing edge angles. The results so far are certainly encouraging.
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APPENDIX B

A NUMERICAL STUDY OF SOME OPTIMUM DRAG CONFIGURATIONS IN TWO DIMENSIONS

81. INTRODUCTION

As a contribution to the overall investigation of minimum drag bodies of

revolution, certain two-dimensional studies were undertaken. The main purpose

of these was to gain insight into the possibilities inherent in the mapping

approach to profile definition which, it was felt, might yield a sufficient

injection of analyticity into the whole problem for a genuine variational

analysis to become possible. As a technique for separating geometrical and

flow aspects, conformal mapping is of great importance in two dimensions, and

its value in axisynmetric flow as a simplifying mechanism can be judged by

Appendix A where an analytic method for flow analysis or design ef bhdles of

revolution is developed ab initio by using unit circle mappitig. At very least

this kind of mapping constrains the allowable form of velocity in such a way as

to focus attention on relatively few parameters characterizing "mode functions"

of the correct type.

Although it would seem that this is a necessary prerequisite for itroduction

of calculus of variations, it was found that in the time available, no concrete
variational approach could be formulated for the axisy•metric case. However,

the two-dimensional pilot studies did, indeed, lead to a number of interesting

results and advances in understanding which can be summarized as follows:

a. A two-dimensional complete variational fomulation does appear to be

possible. However, development of the underlying mathematical tech-
niques is insufficient for such a problem to be solved at the present

time. Variational methods using complex variable function theory

appear to be both much more subtle than the conventional real variable

methods and totally unexplored. We shall not, therefore, discuss this

subject further here.

b. It is possible to reduce both the axisymmetric and two-dimensional

problems to mipimization problems involving a definite sequence of

parameters to be chosen such as to minimize certain combinations of

integrals.
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C. A very simple computer program was written to find solutions of such

minimization problems, and the two-dimensional applications of this
program under various restricted circumstances led to some interesting

results - not the least of which was the inherent feasibility of this

approach for the unique definition of the minimum drag shape given

enclosed area or volume.

The work described in (b) and (c) was not completed owing to insufficient time,

but the feasibility is adequately illustrated by the results described below.

B2. TWO DIMENSIONAL DRAG INTEGRAL

According to Thwaites (Bl] as interpreted by A.M.O. Smith, the drag of a

two-dimensional symmetric shape in wholly turbulent flow can be expressed by

Spence's integral as

Cr (l/2)pUc = 2 02429R" 1 / 5  f 4d ()0)

where p is the half perimeter, c the chord and 0 the surface velocity

divided by U. expressed as a function of arc length s. In this formula the

Reynolds number R is based on chord so

R = U c/v (B2)

where U, v have their usual significance. (Bl) can also be written

Cýc = 2(0.0452R-1/ 6 ) [.p Q4ds] 5/6 (B3)
0

where the expression in ( ) is the Blasius formula for a flat plate and the non-

dimensional group in L J is a convenient parameter worth a name, viz.

C

.D c f Q4ds (84)

0
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In making comparative geometric studies it is clear that both the chord and

free-stream velocity should be kept constant, but(B3) alone is not very useful

as it stands, since ID > I so that minimization of CDc will always yield
the flat plate solution. Alternatives which could conceivably be useful from a

practical engineering standpoint would keep (say) enclosed area, maximum thick-

ness or perimeter constant as well. Some experience with these has shown that

the area constraint produces the most desirable type of optima, and the remainder

of this study is concerned only with drag optima for constant area, chord and

free stream.

As far as the conversion of this to a readily computed form in terms of the

mapping theory is concerned, the area factor must be nondimensionalized in order

that body size should not be an influence, so a sci,bible parameter for minimiza-

tion is

CDA = CDc C- where A = total enclosed area

But the quantity most easily computed is the half area integral which can be

readily expressed by

A = 2 f ydx

0

and then

c
A 1 ydx = 'A (say) (B5)

2c c0

giving from (B3) and (84)

CDA = 1/6, 51'2 0/./2 (~i
CDA (0.0452R- f "6)

4
Finally for reasons of partial conai'sons w&Ch otý•e•: u'wts it :-as 6ecide4 ttat
the integrals based on the rwl.lete r nfig,-t.• "Pse t&1sed, w•idc) would qiva
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CDA = (0.0452R"1/ 6 ) 21/6(21D) 5/ 6 /(21A) 1 I

with the purely geometric expression

(21D) 5/6 15/6

F 2- =21/3 -D (B7)(2 iA)- 2- I-A/r-(7

separable as a measure of configuration efficiency. In terms of F then

CDA = (0.0452R"1 / 6 ) 21/ 6 F (B8)

and the work described below is concerned with the minimization of F.

B3. MAPPING FORMAT

In Appendix A a fairly complete description of the mapping format required
for transfovmation of the profile in the z-plane to the unit circle in the

c-plane is given. Although the basic philosophy concerning constraints on this
mapping function is unchanged for the application here, an appreciable generali-
zation is desirable. Thus the work of Appendix A was restricted to circumstances

under which it was feasible (possible) to work out complete solutions for general

axisymmetric flow, and in fact only blunt noses with either blunt or cusped
trailing edges were actually analyzed.

As far as the numerical analysis of the integralF of section B2 are concerned,

however, it is sensible to begin by statinq the most general case - that for which

finite angles Tl and T2 are permitted at both ends of the body. tinder these

circumstances the mapping derivative can be written

dz ( - + V42 + [ + + (B9)

where

S= 1 - T/i, "2 = 12/

and

al = 1 2
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in order to ensure closure. In addition it can be shown by symmetry that for

profiles representing a body of revolution every an coefficient must be real

and, of course, the surface behavior of the derivative is obtained by setting

S- eiW for points on the unit circle. In fact the connection between the

mapping derivative on the surface and the arc length is of central importance,

and follows from the observation that, if subscript "s" denotes surface value,

then

dZ s el dz sSi (BlO)

and so

ds. = dzsj7 r dz S)(Bll)
s s-

where s is the profile arc length measured from the trailing edge, and os

is the geometric surface angle (or flow angle).

There are a number of different formulas which can be used for the various

integrals arising in sectionB2 which will be very useful in deriving certain

special and exact cases. However, there is very little that can be done with

the fundamental integral

C

ID /cQd

unlike the chord and area. Thus for this integral we note that the surface

velocity (in twu dimensions only) can be written

S2 sin w

so that

ID= cf 24 siwn " d. ([12)
Sco (ds/d=)30

Putting r= ei in B19) and (11l) then gives

ds (2 sin w)'11 2 cos ! P2(l + a cos w + a2 cos 2w + 2

"+ (a1 sin w + a2 sin 2w + ... )2]l/2 (B13)
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and the best that can be done with IO is then

= 1, (2 sin /2)43l (2 cos w/2 )4-U2 dw
D [If + aI cos w + a2 cos 2w + ...)2 + (a, sin w + a2 sin 2w + ...

(B14)

So far no way has been found to avoid direct numerical evaluation of this formula

except in certin special cases.

Obviously if the necessary number of coefficients is large and the number

of quadrature points must be large for sufficient accuracy, the evaluation of

(Bl4)for the many permutations, required to ace the minimum of F could become

a very tedious and costly operation. Therefore, there is a strong incentive to

find both more accurate (specific) quadrature formulas than (say)Simpson's rule,

and methods of evaluation at least for A and c which do not require further

quadratures. The topic of special quadrature formulas is considered later

(section 9b), but the obvious alternatives for c and A can be derived

immedi&aJly from (B9) by using the expansion in powers of 1/k valid when

Thus by truncating each group in (B9) it is a trivial matter to find the

triple product coefficients An in the formula

m d A2 A3
1z +A. + A 3+ "'. (B15)

by using the polynomial product subroutine mentioned in Appendix A. Then it is

easy to prove from(B15) that

7rA A6
c = d•d = 2 (1 -A 2 ---s- B ... (B16)

0

and

T1 2 A2  A 2  A 2

A 2f .dw = 1 -A -- ... (Bl7)
0
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both of which may be useful computational formulas provided the convergence is
adequate. As will be seen the convergence is quite often poor, but(816) and

(B17) do have a theoretical interest in certain special cases quite apart from
their general computational promise.

The most general case has not been computed fully since it was not realized
in the early stages of this study that it would be necessary to incorporate an

option providing for finite closure angles at both ends. This feature greatly
increases the program complexity through the poor convergence of the zero

factors

1l u2

(1 - ) and (0 +1)

and the associated revised general optimization program has not been properly
tested, although preliminary results have been obtained. This phase is
described further in section B9 where it properly belongs, because most of the
subtleties necessary for the general scheme* were learned from the p-elinimnary
study of special cases. Therefore, it is both easier and more logical to dis-
cuss the special cases first - more or less in the order in which they were

developed.

B4. ELLIPSES

A natural starting point for such optimization studies is the ellipse
profile because its characterization is so simple in terms of the mapping
theory. Furthermore, not only does it appeal to the intuition as a low drag

shape, but in fact it was known to have good properties (see e.g., Figure 14
and section 8 in this report).

In the early stages it was thought that perhaps the ellipse could be
established analytically as the optimum case with a continuous o (as
opposed to trick "fairings"), on the grounds that the ellipse family is the
only blunt ended symmetric class (TI = T2 = 7r) which also has every an
coefficient zero except a2 . This conjecture did not turn out to be correct,

*including, of course, the necessity for its introduction at all!

97

,i wit



but it was possible to produce analytic expressions for every phase of the

ellipse study and so give invaluable guidance for accuracy requirements on the

later numerical work.

The essential formulas come from (89) by first setting 1l = '2 = 0 which
gives

dz 1 a 2 a 3So1 7+ + ""(618)

as the defining formula for all symmetric blunt-ended bodies. Then the ellipse

family is defined by further putting a3  a4= ... = 0 so

z_ a2 a2
dz +- z = C + 2 C real

Choosing C = 0 to put the origin at the center and then setting =i

gives the surface coordinates as

xs (1 - a2) cos W, ys = (1 + a2) sin w

so that

a = semi-major axis = 1 -a 2

b = semi-minor axis = 1 + a2

and the range of a2 is -l < a-2 < +. Clearly the likely (slenaer) range of
low drag shapes corresponds to a2 < 0 and obvious limiting cases are the

streamwise flat plate (i, = -1) and the circle (a 2 = 0).

Now the structure of ds/dw from (B13) is

ds l + 2a2 cos 2w + a = sin2w + bcos2w

from which it is clear that for the range a2 < 0 (or b < a) of interest
here, integrands involving ds/dw can be expressed in terms of complete elliptic

integrals by choosing the modulus as
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k2= 1 b2/a2

thus giving the complementary modulus k', where

k' 2 = 1 - k2 = b2/a 2

as the fineness ratio. Then the perimeter/chord ratio is

IT/d

p=-fB-d = -E

0

and the fundamental 1D integral can be written

= (I +kk') 4  --S[E(2--)2E - 2k' 2 Kjt
D k4

where E and K are the standard complete elliptic integrals. Since, in
addition,

A - k8

these results can be used to calculate the behavior of the comparison factor F

of (B7) with great precision as a function of the fineness ratio k' = b/a.

The limiting values behave as expected. Firstly, as k' -÷ 0 (k - 1),
IA - 0 but K behaves as In 4/k'. The limiting value of the last term is
nonetheless zero since it is multiplied by k' 2 . Furthermore E(M) = 1 so

the limiting value of I is 1 as it should be according to the definition

(B3) since k' = 0 is the flat plate case.

As k' 1 the profile tends to circularity and IA - r/8 as it should

according to (B5). Some care is needed with ID as k -) 0 owing to the k"

factor, but it turns out that

(2 - k2 )E - 2k' 2K nu 3- k4 + 0(k6
0k
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giving the limiting value

ID(O) = 3w

which implies that a circular cylinder in turbulent flow has a drag coefficient
(3Tr)5/6 x flat plate of the same chord - provided, of course, that separation is

ignored

In any event Fig.Bl shows the ellipse curve as a function of fineness ratio
(f) with the clearly defined minimum at about f = k' = 0.22. Anticipating

somewhat, it can be seen that this curve has very nearly the lowest minimum of

all those on Fig. Bl.

B5. SOME CUSPED AIRFOILS

No study like this is complete without the Joukowski airfoil. This shape
also offers some hope of complete analytic evaluation, but there are others of

even simpler form. These are all of intrinsic interest because the cusped

trailing edge removes the possible objection that any wholly blunt shape deduced

as an optimum by this integral formulation would always be liable to poor

practical performance due to separation.

The Joukowski profile is a member of the more general class known as pole

airfoils which are mentioned in Appendix A and discussed in more detail in [B2].

The single pole airfoil is, strictly speaking, the simplest member of this class
and so will be considered first.

(a) A single pole airfoil is characterized by Tl = 0, T2 = f and

S(1 )(1 + Idl < 1 (B9)

d being real for the symmetric case. The secnnd factor can be expanded to give

the an coefficients as

100an dn 1

in II



_•~~_ M -. Mo mRli l P n i ý

but again (as a check case) a more direct evaluation was used for ID, only

the area being computed from the series. Thus, instead of expanding (BIg) the

modulus of 1 + l(c - d) can be calculated on the surface and used in (B1) to

give

ds.= 2 sin [d2 + 40 -l d) cos2 w/2
-_ 2 sin [(l + d) -4d cos 2 ]

so that substituting in (B12) and using the transformation C = cos w/2 yields

c 42 3/2
64 f + d)2 4d- I2  4d

Since the chord is given by

c =12n +d)

and the thickness by

= 2Ymax = V(3 -"d)((1 + d) - 2- sn ( 2 )

computation was straightforward, but ID was evaluated by using a I01 point

Simpson routine on looking at the above formula. The results are shown on

Fig. B1 and clearly exhibit a minimum at about f = 0.2. Somewhat disappoint-

ingly the drag is evidently much greater than for the ellipse.

(b) In the pole format a Joukowski profile taKes the form

dTz +T C + l - d l( 0 < d < 1
(T 0- )d)' -

again with d real. Following the same steps as for the single pole case leads

to

1

1 = 64 f L( + d)2 -4d2 4d (B20)ID c - [4d2 -4(2d - 1)C2]3/2(
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with

4c = 7

2d sin wo(l - cos IW) = (I -d + d2 fl-- 7 + d4

1 - 2d cos•w + dz . 2d

Again (B20) was evaluated by a 101 point Simpson quadrature, but this time an

exact integration was possible and was carried out. It served to show that

the results obtained by the numerical procedure were quite adequate. The

results are given on Fig. Bl and exhibit a very similar behavior to the single

pole case with a somewhat higher drag.

(c) The final experiment in cusped trailing edges was a single parameter

airfoil which is, in a sense, the cusped analog of the ellipse since it is

defined by all an = 0 except a2  so that

-= - ) i + -+ , a2 real (B21)

On the basis of the kind of argument advanced intuitively for the ellipse,

namely that it should be some kind of optimum since all the higher order modu-

lations due to an are absent, it might be expected that (B21) would be

superior to both the Joukowski and single pole profiles since they both have

an infinite sequence of an coefficients.

However, some doubt can be cast on this idea immediately because the

modulating g(r) factor in (B21) is

2 + c + a2  (¢ - i -

g(•) 2 - Z

where

4l' 92 = - + -2

If a2 < 1/4 both zeros are real and since no zero can lie outside the unit

circle the overall permissible range of a2  is 0 < a2 < 1. When the roots
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become complex the profile starts to bulge and unlike all the previous cases

the limiting form at a2 = 1 has two symmetrically disposed cusps just down-

stream of the leading edge! Consequently, it is clear that (even without

separation) this shape will have very poor drag characteristics for a2

appreciably greater than 1/4.

Forwarned by this argument the numerical result comes as no surprise.

Using

c 4 4(1 a~ a2)

t 7-a 2

and the original form of I (i.e., (B14)) with a Simpson quadrature gives

the curve shown on Fig. Bl. Evidently the characteristics are much worse than

the previous cusped cases, which serves to show very clearly the naivete of

the conjectures made before about optin,a coming from having as many an

coefficients as possible vanish. Further very surprising evidence concerning

this situation is provided by the next section.

B6. INITIAL OPTIMIZATION FOR BLUNT BODIES

The evidence of section B5 lent weight to the idea that the really good

shapes would have fore and aft symmetry. Furthermore, there was at least a

suspicion that the cusp was an undesirable feature quite apart from its

unsymmetrical role in the airfoils studied. Therefore, it was natural to con-

sider the problem of minimizing F only for blunt ended shapes. Under these

circumstances T] - n, T2 = 7 so that v, = 0, P2 = 0 and the fundamental

formulas become simplified mainly because then

An = a n

so that (B16) and (B17) could be used directly without undue fears about

convergence. In fact, (B7), (B8), (B14), (B16) and (B17) show that F is a

function only of the an numbers for blunt ended shapes, and a definite

cut-off for the an sequence consistent with some optimistic belief about

convergence is obviously a necessity for any numerical work.
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On this basis a computer program was written to effect the minimization,

and it can be described very simply as follows:

(a) It was decided that rather than try sophisticated gradient, steepest

descent, etc. methods, a very simple "boxing" procedure to progressively narrow

in on the minimum of F(a,, a2 , ... a n) would be adequate, mainly because of

the conviction that it only needed to be done once in-order to isolate the

optimum. This very simple program works by the following steps which depend

only on a subroutine to evaluate F given a set of a n values.

Step 1. Input an initial guess for the an values and a starting

step size h.

Step 2. Increase a1  to a1 + h. If F has decreased, move on to

a2. If F has increased, try a1 - h. If this also gives

an increase, leave a, alone and move on to a2. Continue

this process to an.

Step 3. After one pass as in step 2, repeat the cycle to see if the

changed values of a2 , a3, ... have changed the decision

regarding a1 . Continue this checking until acomplete pass

does not change F.

Step 4. Decrease h by a factor of 10 and start again at step 2.

Step 5. When h hhs been reduced to desired accuracy, stop.

It can be seen that each completed cycle (end of step 3) means that to within

the current value of h, it is not possible for the program to detect a

further decrease in F, which implies that the local minimum is contained

within a hypercube (box) of volume h . The division of h by 10 each time

is a particularly convenient mode of operation since then each completed cycle

defines another decimal place.

Various runs were tried to test this program using special test functions

of several variables and the direct results already reported for F depending

on only one variable. It was very soon appreciated that high accuracy for the

quddratures was necessary if a large number of terms were to be isolated,
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since the whole process hinges on the detection of a genuine change of F due
to a change of an as opposed to variations caused by numerical error. This

topic will be discussed later (Section 09); it is sufficient to record here

that 50 - 101 quadraturepaints were adequate for 20 - 30 an coefficients
with h as small as 0.00001. For this particular version of the program

further description is not necessary because of the results that it led to
immediately.

Of course, in the case of the ellipse it was not necessary to worry about
accuracy of quadrature formulas since all the necessary calculations were

exact. Under these circumstances it was a trivial exercise to determine the
optimum ellipse by the minimization program and the result when cycled down

to h = 0.0000001 was

S2 = -0.6375691, f = t/c = 0.2213225, F = 7.7122530

This is shown on Fig. B2 compared with some other "good" profiles.

(b) The first two serious attempts to find general optima were with 10
and 20 an coefficients. Since the result obtained with the 20 term case was

a repeat of the 10 term with greater accuracy, we shall not discuss the 10
term at all. In fact, both runs were first carried out without the 5/6 power

on ID, but this only changes the details not the nature of the answers.

First it was observed that as h was decreased through each cycle all the
odd coefficients decreased rapidly which implies very clearly that fore and aft
symmetry is a necessary requirement. After 5 cycles (h = 0.00001) the follow-

ing even coefficients were obtained:

a2 = -0.71513

a4 = -0.09447

a6 = -0.04134

a8 = -0.02384

a10 -0.01567

a 12 = -0.01111

a14 = -0.00825

a1 6 = -0.00628
a18 = -0.00480

a 20 = -0.00349
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It was noted that this body did have a slightly lower F than the best ellipse
by about 0.15%, but by far the most striking feature of the coe~fficients was
their poor convergence. On plotting the shape it was noted that the "bluntness"
was confined to an exceedingly local region near the ends, with the overall
aspect having every appearance of a finite angle wedge ended body. By a very
crude protractor estimate, a Tl value of about 500 was obtained from the plot
leading to TI/n - 0.28 or 'l = 12 'n 0.72. In view of the leading coefficient
in the above table, the obvious requirement for fore and aft symmetry and the
poor convergence, it was only natural to compare the table values with the

expansion of

mI
for w = 0.72. The values of these coefficients are

a2 = -0.72

a4 = -0.1008

a6 = ,-0.0430

a8 = -0.0245

alO 0  -0.0161

al? = -0.0115

a14  -0.0087

a16 = -0.0068

a 8is -0.0055

a•2 0 = -0.0045

On comparing the two sets of valuesand remembering that the "minimization"
sequence was truncated and that the estimate for T was very crude, it was
hardly possible to avoid the inference that the minimization procedure was
leading to a limiting form of solution described by

iz B-= 1- 1 , p ý-0. 72

inasmuch as such bodies would have finite trailing edge angles and character-
istic rates of convergence as shown above, this discovery was singularly
unwelcome as well as surprising. It meant, at least, that ruch minre serious
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thought would have to be given to the structure of subroutines designed to
evaluate F for use in the minimization program. However, this is once again

best discussed in Section B9, since it is a topic relevant to the most general

program and the important details can, in any case, be best appreciated by
examining the simpler special solutions with finite closure angles first.

B7. CANONICAL WEDGE END PROFILE

If the ellipse can be considered as the canonical blunt end shape on the
grounds that it has only one an coefficient, then the class suggested in

Section B6 as the tentative limit of the minimization procedure, namely

dz l 1 2 O < (B22)

can certainly be regarded as the canonical wedge end profile since it has none.
Once again the temptation exists to jump to the conclusion that because there
are no an coefficients this profile must be the optimum; but having been

wrong twice before (section B4 and B5c) it is possible to defer judgment on

this issue.

The consequences of (B22) are quite interesting. Since all the an

coefficients are zero the expansion of (B22) gives the An coefficients

immediatdly as

An =n

so that

An+l nI-' + 1+ 0 l

n n

and therefore the expansion is uniformly convergent [B31 when •I > 1 if

i > 0 or >

which covers all cases of interest here. Hence (B16) and (B17) are apparently
trivial calculations to give area and chord. Furthermore, from (BlO) and (Bll)
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ds (2 sin Os "r('e

and so

Qs =2 sin )T/7

which are all unusually simple.

However, the most important feature is that the drag integral also turns

out to be an analytic result. This can be seen from the combinationoi the

above results because

11 1T
ds dw f (2 sin W)3c+l dw

0 0

where we have used c for T/Tr as a convenience so

Using 0 = w/2 - w this can be written as

Tr/2

.1 = -23e+l f (cos 0)3E+l dp

and then by using the expansion* (-7/2 < 0 ir/2)

Cosv4 -- T... vj.~ ~ + V 2 cos 2ý v + 2) cos 40 t2•T r[(l/2)vr~ ++llj]1 +CS2 +CS4 .

it follows that

I = 3+ 2).r , 1D = I/C
r[(3c/2) + (3/2)]

another remarkably simple result. It can be seen that this has the correct

behavior in the limits since

a. E = 0 gives I = r(2)n/r(3/2) 2 = 4 which is correct for a mapped

flat plate which always has a chord of 4 giving ID = 1.

*This appears in [B3], p. 263, No. 40. It is also uniformly convwrgent when
c < 1 and has the same asymptotic rate of convergence as the An expansion.
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b. 1=l gives I = r 6n s = 3n since c = 2
for the circle which is the correct result according to section B4.

By using these formulas the analytic behavior as recorded on Fig. B1 was easy to
calculate.

However, this calculation served to indicate a rather obvious weakness in
the expanded forms used for the chord and area. In order to determine the chord
accurately a lot of terms had to be used since the convergence of the An
sequence is poor. To some extent this was also true of the area but much less
severe. Thus, at a f = t/c ratio of 0.215 it was necessary to use 200 terms
in (B16)!

The subroutine which generated the various formulas was also cycled through
the optimization program described before (section B6a) down to a step size of
h = 0.0000001, and gave the optimum case of this family as

c = 0.3397098, f = t/c = 0.2151623, F = 7.7007989

In this application - as in the straightforward parametric variation to define
the curve of Fig. Bl - the slow convergence was not important since only one
parameter (- or actually c) was being varied, but the implication for
general studies with many parameters were not regarded as very encouraging.
This will be discussed further in section B9. For the moment we merely note
that the optimum member of this family (above) has a wedge half angle of about

0.3397098 x 90 - 30.570

"and is shown on Fig. B2. According to section B6a, the value of F is certainly
lower than that of the opti.,ium ellipse, but the gain is trivial since the CDA
ratio is only 1.0015 (see Fig, B2).

B8. CIRCULAR ARC

Because of the evident importance and different nature of wedge-end
profiles it was decided that at least one other case should be investigated.
It is known that the profiles generated by segments of circles can be analyzed
exactly and in fact the basic solution is given by Milne-Thomson [B41. However,
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one of the reasons for considering this case was to compare the known theory

with the mapping format used here - in order to get a better understanding of

the convergence situation. This was considered necessary because section B7

shows how poorly the zero factors converge when expanded naively, but this was

no guarantee that a modulating term containing an coefficients would not make

the situation worse still. Obviously such information and test cases would be

important in designing an overall subroutine suitable for the most general

minimization applications.

Therefore, some detail had to be added to Milne-Thomson's exposition and

this turned out to be very fruitful since an exact formula (no quadratures) was

found for the drag integral. This case then became the most important test

problem since it had all the features desired for the most general program and

all the relevant formulas exact.

Hence some explanation cannot be avoided and, whilst circular arc profiles

are a natural aspect of Karman-Trefftz mappings, the coaxial circle method

of Milne-Thomson is preferrable since it (eventually) suggests the forms which

permit exact evaluation of the Q4 integral. Briefly, the classical procedure

is to start from bipolar coordinates defined in the z = x + iy plane as

sketched, whence
In z + a = ln r i(6 - l

Pz ~-a r1  2 1

ý \1e and then denote

-a +a r2

S= n•-� 2 ; v + i2

so that profiles of constant X are circular arcs. The mapping
mI

z = a coth 7 V (B23)

then maps the lines -< < < +®, 0 > x > -2n into a connected sequence of 4
shapes consisting of the real axis and a piece of circular arc which can either

be concave or convex from a chosen side.
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(a) There are many ways to get fluid motions into such a system (see e.g.,

Milne-Thomson), but one of the most fruitful is to consider various W -v

mappings where

W = * + ip = complex potential

In particular the relation

W=a coth (m-) (824)

is interesting because separating real and imaginary parts gives

=- (2a/m) sin (2m) (2a/m sinh (2p/m (B25)
cosh (2,/m)- cos (2X/m ' =cosh (2p/m)- cos (ZA/m)

the first of which vanishes for

0 , + mv + +~

Leaving aside some slightly subtle details about branches, it can be shown that

if 0 < m < 2 then the cases x = 0, x = -mn/2 give flows having the real

axis and one of the above sequence of circular arcs as streamlines.

Although it is not possible to eliminate v directly to give a W(z)

relation in general, the two limiting cases of interest to this work can be

done, viz.

when m = 2, w = z (infinite plate along y = 0)

when m = 1, w = z + a2 /z (semicircle)

and evidently the range of interest is 1 < m < 2.

(b) The complex velocity is, however, expressible in terms of v for all

cases since

dW dW dv = 4 sinh2 v/2
q = u - v = Bz- = 31-7- 2

m sinh v/rn

so that the storface velocity magnitude can be written
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Qs = 4 cosh 2 I/ - 2 > '

M cs 
(R26)

=4 (cosh P - cos miT 2 -a < x < +a

-2 c

which are reasonable enough formulas in terms of the parameter W. However,

to relate these tn the unit circle plane contained in g = & + in it is neces-

sary to find a mapping which maps the unit semicircle into one of the segments

and has the same distant regions. Evidently a mapping of the same kind as

(B23) must suffice, and by considering, therefore

= c coth n

it is easy to show that the choice n = 2m, c = 1 is required giving

coth 2m or ev/rn +

Comparing this with (824) and noting that the distant fields match only when

m = 2a gives the relation

z + 'm - + I+)m; m = 2- c = 1 + u (B27)
z -m

which is the usual Karman-Trefftz form.

By means of (B26) and (B27) the surface velocity can be expressed in terms

of the usual unit circle angular variable since we get

e = cot W

and then

s = (2 sin ,)£ cos 2m + s2mnw + 2 cos sCo M o 4
sin •-+2cs•- csn •-sinm~~

m (2 T 2

which is fine for specific computation of Q on the profile, but not of much

general use.
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Much more significant is that by using 0 as the independent variable an
exact form for the basic drag integral can be found. Thus, from (B25) with
X=-mv/2 and m = 2a

2 = inh 2p = 2 tanh P-
cosn 2p/m + 1 m

giving

e /m = , (-2 <_ <_2 on the surface)

whilst

=I = fq4ds = fQ 4  s do f q3do (B28)

0 -2 -2

and Q can be written (with B = cos E7T/2)

= 1 r- )m + (2 2a(4- (4-m22)/ (B29)
m l [(2 + )m + (2 - )/2] (4 2)c/2

Substituting (B29) into (B28) and accounting for many symmetries in groups of

terms gives, finally,*

m 2 9 [rk7-3 l+ , s - c)r(2 + c) + 3(1 + 42)r5-p(3+m 6 ()I - T

+ 2e(3 + 2B2 )r(4)r(4)] (B30)

The other quantities needed for direct evaluation are the chord and area. These

are given very simply by

C = m (B31)

and

*It is, again, easy to show that (B30) gives the same correct limiting values of
ID in the flat plate and semicircle cases as before, but there is no point in
giving the details here.
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A 2 lIe tan e - sin 2 0")(32
Sa sine

where , is half the closure angle (e = T/2). Note that for small values of
0, A - 0 of O(o), in fact

A ', m 2 [o + 4 0 + 00 5)

Putting (B30), (B31) and (B32) together, the circular arc curve of Fig.Bl was
produced by completely analytic steps. These formulas were also run through
the minimi7ation program down to h = 0.0000001 with the.resulting optimum
given as:

= 0.2693423 (T n 48.50), f = 0.2147540, F = 7.7239339

As can be seen from Fig.Bl the drag characteristics are (slightly) less desir-
able than either the ellipse or canonical wedge end profiles. Fig.B2 shows the
optimum shape compared with the optima of these other two families and also
indicates that the drag ratio of the best circular arc is only 1.0030 x that
of the best overall wedge end case.

(c) However, as pointedout before the greatest value of the circular arc
is as a test case, because it has all the desired features of the general
method. It remains therefore to cast the unit circle mapping (B27) into the
format of this work. Differentiating gives

dz 4m2 (G + l)(ý( - 1)P

S[( + )m_ (- 1 )m]2 = 1 -- = m-1

which can be reorganized to

mdz ( I) 2m 2 1 1=z = l/- -(1 - l m (1 C g()

showing that the modulating g(c) part is
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g(O) = (1 + L (i- )m -2

This can be expanded in powers of l/c2 since

1  )m (1  )m 2m (1 + 1 1 +

where
amL I(U-W - 2)p 3
a2 =.=.(j3! a4 = - (_5!. -

so that

( a2 a 4 +- 1 2a2 (2a4 + 3a2)

7 J C 1- .1-

These coefficienits can be computed to any reasonable order by using existing
subroutines which operate on series and, as expected, g(c) itself does not
converge impressively. For instance, with v = 0.9 (which Is certainly part
of a reasonable test range ) the 40th coefficient of (1 + 1/r)o is 0.00008737
and the 40th coefficient of g(O) is 0.00004556, so the rate of convergence is
about the same as for the singular factors. The combined 40th term is 0.00034836
showing, as anticipated, that product of the poorly convergent singular factors
with the g(d) sequence only makes things worse. All this information is
germane to the structure of the general minimization program. This topic is
discussed next.

B9. GENERAL MINIMIZATION PROGRAM

(a) The numerical work described in sections B4 - B9 (Fig.B4) succeeded
in establishing that the canonical wedge end optimum (section B7) was clearly
the best of all the families and optima considered. However, as remarked before
on a number of occasions (e.g., section B5c) we were loath to jump to the
conclusion that this was the optimum just hecause of its extreme simplicity.
Not only were such hasty arguments disproved by further calculations before
(e.g., section 85c), but also it should be noted that the circular arc, which
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was introduced merely as a further check case and which has a complicated and
poorly convergent structure in terms of the an coefficients, nevertheless
gives an optimum very close to the canonical shape. Moreover another factor
had entered the picture at this point. The complex calculus of variations

theory had been completed - admittedly on a very tentative basis. However,
neither the ellipse (special case for T = w) nor the canonical wedge end

profile satisfied the resulting differential equations supposedly defining the

real extremum*. Although not conclusive, this fact together with the above
arguments was sufficient to indicate that further numerical minimization
studies were needed, and that they must encompass the complete system as out-

lined originally in section B3.

As has been noted before the convergence for the series in the general
case is not adequate for them to be used to determine the area and chord.
General operation of the numerical scheme described in section B6a requires
a large number of passes for (say) the determination of 20 - 40 coefficients,
and procedures adequate for only one parameter have to be reconsidered owing
to the computing costs - even though this particular calculation only needs to
be done once in principle. In this context it is also worth noting that if
this is true in two dimensions, it is obviously even more important for the

axisymmetric case.

(b) At first it was hoped that the convergence difficulty could be circum-
navigated by replacing the series for chord and area by quadratures. A new
program was written on this basis using various different numerical methods:

Simpson's rule

Cubic spline fits

Fast Fourier transform fits

to carry out the quadratures. Even using 201 points not one of these was

remotely accurate enough when compared with the circular arc exact solutions

in the region of the various optima.

*No solutions for these equations have been found ab initio partly because of
the speculative nature of their derivation. This phase of the work is simply
not developed enough at the time of writing.
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The reason for this failure of the conventional methods to give the kind

of precision necessary for the minimization process to detect the influence

of higher-order small coefficients is not hard to understand. All of such

conventional methods depend very strongly on the fundamental axiom of classical

numerical analysis - that the data corresponds to a sufficiently smooth (differ-

entiable) function. However, the functions to be integrated here are of the

form (e.g., see (B14)).

K = [(2 sin (2 cosw (833)

where f(w) is smooth in the desired sense, but

0 < poq <1

Thus the singular factors cause a very rapid rise at the ends of the range and

in fact the integrand of (833) behaves as wp for small w and so has an

infinite derivative as w - 0.

One way to get around this difficulty is the old (but very important)

artifice of separating the singular terms and doing them analytically. A sub-

routine to affect this has been written and tested for integrals of the type

shown in (B33). Its efficacy is staggering as can be seen from the results

tabulated below on a simple test case where the complete answer is known, for

instance f(w) = 1.

(c) The general program using this artifice for numerical quadrature has

not been written but would not be difficult since the subroutines required and

the basic operating process of the minimization part are all available.

However, this program would not just be a repeat of that of section B6a with

more accurate quadrature, since another very important feature for time and

cost saving is that the old program computed the whole integrand each time,

whereas it is obviously only necessary to update one term in (e.g.) the Fourier

expansions each time an an coefficient is changed.
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Table B1. % Error of I for Various Methods When f(w) = 1 (101 points)

Case Separation
of

Fast Singularity
Simpson's Cubic Fourier + Simpson's

p q Rule Spline Transform Rule

0.1 0.1 -0.390048958 -0.396812512 -0.45374470 0.000000076

0.2 0.2 -0.224950593 -0.232855499 -0.267544643 0.000000236

0.3 0.3 -0.127376081 -0.134802905 -0.155229725 0.000000398

0.4 0.4 -0.070438403 -0.076724170 -0.088178328 0.000000521

0.5 0.5 -0.037729564 -0.042441076 -0.048640337 0.000000596

0.6 0.6 -0.019315228 -0.022617007 -0.025747832 0.000000620

0.7 0.7 -0.009221491 -0.011301525 -0.012755969 0.000000602
0.8 0.8 -0.003888859 -0.004997188 -0.005608282 0.000000546

0.9 0.9 -0.001220631 -0.001638814 -0.001845777 0.000000479

1.0 1.0 1 0.000000540 0.000002570 0.0 0.000000041

Since this would not be very difficult or costly it seems that it should

be done if only to give, once and for all, the final optimum- and so define

in a watertight manner the absolute lower limit on CDA. Not only will such

studies not need to be repeated, but engineering compromises could thei be

organized on a firm objective basis.

B1O. CONCLUSIONS

The studies carried out as described in sections B4 B9 lead to the

following straightforward conclusions:

a. A true optimum exists and can be found by a revised, more general

version of the minimization program.

b. There is very little to choose between the class optima of ellipses,

circular arcs and canonical wedge ends.

c. However the canonical wedge end is the best of these and it has
finite (wedge) angles at the ends.
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d. It would not be difficult to construct and run the general proqram
(see a) to decide whether or not c is the absolute optimum.

e. Since the axisymmetric drag integral is similar, it should be
possible to repeat this procedure using the theory of Appendix A
and so define an axisymmetric true optimum.
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